• LCS(详解)


    一,问题描述

    给定两个字符串,求解这两个字符串的最长公共子序列(Longest Common Sequence)。比如字符串1:BDCABA;字符串2:ABCBDAB

    则这两个字符串的最长公共子序列长度为4,最长公共子序列是:BCBA

    二,算法求解

    这是一个动态规划的题目。对于可用动态规划求解的问题,一般有两个特征:①最优子结构;②重叠子问题

    ①最优子结构

    设 X=(x1,x2,.....xn) 和 Y={y1,y2,.....ym} 是两个序列,将 X 和 Y 的最长公共子序列记为LCS(X,Y)

    找出LCS(X,Y)就是一个最优化问题。因为,我们需要找到X 和 Y中最长的那个公共子序列。而要找X 和 Y的LCS,首先考虑X的最后一个元素和Y的最后一个元素。

    1)如果 xn=ym,即X的最后一个元素与Y的最后一个元素相同,这说明该元素一定位于公共子序列中。因此,现在只需要找:LCS(Xn-1,Ym-1)

    LCS(Xn-1,Ym-1)就是原问题的一个子问题。为什么叫子问题?因为它的规模比原问题小。(小一个元素也是小嘛....)

    为什么是最优的子问题?因为我们要找的是Xn-1 和 Ym-1 的最长公共子序列啊。。。最长的!!!换句话说,就是最优的那个。(这里的最优就是最长的意思)

    2)如果xn != ym,这下要麻烦一点,因为它产生了两个子问题:LCS(Xn-1,Ym) 和 LCS(Xn,Ym-1)

    因为序列X 和 序列Y 的最后一个元素不相等嘛,那说明最后一个元素不可能是最长公共子序列中的元素嘛。(都不相等了,怎么公共嘛)。

    LCS(Xn-1,Ym)表示:最长公共序列可以在(x1,x2,....x(n-1)) 和 (y1,y2,...yn)中找。

    LCS(Xn,Ym-1)表示:最长公共序列可以在(x1,x2,....xn) 和 (y1,y2,...y(n-1))中找。

    求解上面两个子问题,得到的公共子序列谁最长,那谁就是 LCS(X,Y)。用数学表示就是:

    LCS=max{LCS(Xn-1,Ym),LCS(Xn,Ym-1)}

    由于条件 1)  和  2)  考虑到了所有可能的情况。因此,我们成功地把原问题 转化 成了 三个规模更小的子问题。

    ②重叠子问题

    重叠子问题是啥?就是说原问题 转化 成子问题后,  子问题中有相同的问题。咦?我怎么没有发现上面的三个子问题中有相同的啊????

    OK,来看看,原问题是:LCS(X,Y)。子问题有 ❶LCS(Xn-1,Ym-1)    ❷LCS(Xn-1,Ym)    ❸LCS(Xn,Ym-1)

    初一看,这三个子问题是不重叠的。可本质上它们是重叠的,因为它们只重叠了一大部分。举例:

    第二个子问题:LCS(Xn-1,Ym) 就包含了:问题❶LCS(Xn-1,Ym-1),为什么?

    因为,当Xn-1 和 Ym 的最后一个元素不相同时,我们又需要将LCS(Xn-1,Ym)进行分解:分解成:LCS(Xn-1,Ym-1) 和 LCS(Xn-2,Ym)

    也就是说:在子问题的继续分解中,有些问题是重叠的。

    由于像LCS这样的问题,它具有重叠子问题的性质,因此:用递归来求解就太不划算了。因为采用递归,它重复地求解了子问题啊。而且注意哦,所有子问题加起来的个数 可是指数级的哦。。。。

    这篇文章中就演示了一个递归求解重叠子问题的示例。

    那么问题来了,你说用递归求解,有指数级个子问题,故时间复杂度是指数级。这指数级个子问题,难道用了动态规划,就变成多项式时间了??

    呵呵哒。。。。

    关键是采用动态规划时,并不需要去一 一 计算那些重叠了的子问题。或者说:用了动态规划之后,有些子问题 是通过 “查表“ 直接得到的,而不是重新又计算一遍得到的。废话少说:举个例子吧!比如求Fib数列。关于Fib数列,可参考:

    求fib(5),分解成了两个子问题:fib(4) 和 fib(3),求解fib(4) 和 fib(3)时,又分解了一系列的小问题....

    从图中可以看出:根的左右子树:fib(4) 和 fib(3)下,是有很多重叠的!!!比如,对于 fib(2),它就一共出现了三次。如果用递归来求解,fib(2)就会被计算三次,而用DP(Dynamic Programming)动态规划,则fib(2)只会计算一次,其他两次则是通过”查表“直接求得。而且,更关键的是:查找求得该问题的解之后,就不需要再继续去分解该问题了。而对于递归,是不断地将问题分解,直到分解为 基准问题(fib(1) 或者 fib(0))

    说了这么多,还是要写下最长公共子序列的递归式才完整。借用网友的一张图吧:)

    c[i,j]表示:(x1,x2....xi) 和 (y1,y2...yj) 的最长公共子序列的长度。(是长度哦,就是一个整数嘛)。公式的具体解释可参考《算法导论》动态规划章节

     
     
     1 #include<stdio.h>
     2 #include<string.h>
     3 #include<algorithm>
     4 #include<stack>
     5 #include<queue>
     6 #include<iostream>
     7 #include<map>
     8 #include<vector>
     9 #define Inf 0x3f3f3f3f
    10 #define PI acos(-1.0)
    11 using namespace std;
    12 int str[1234];
    13 int ans[1244];
    14 int dp[1234][1234];
    15 int len=1;
    16 int main()
    17 {
    18     char str1[1234],str2[1234];
    19     int len1,len2;
    20     while(scanf("%s %s",&str1,&str2)!=-1){
    21     len1=strlen(str1);
    22     for(int i=len1;i>=1;i--)
    23     {
    24         str1[i]=str1[i-1];
    25     }
    26     len2=strlen(str2);
    27     for(int i=len2;i>=1;i--)
    28     {
    29         str2[i]=str2[i-1];
    30     }
    31     memset(dp,0,sizeof(dp));
    32     for(int i=1; i<=len1; i++)
    33         for(int j=1; j<=len2; j++)
    34         {
    35              if(str1[i]==str2[j])
    36              {
    37                  dp[i][j]=dp[i-1][j-1]+1;
    38              }
    39              else{
    40 
    41                 dp[i][j]=max(dp[i][j-1],dp[i-1][j]);
    42              }
    43         }
    44         printf("%d
    ",dp[len1][len2]);
    45     }
    46     return 0;
    47 }
    View Code
  • 相关阅读:
    php数据缓存到文件类设计
    php静态文件缓存示例
    php array_merge和“+”的区别和使用《细说php2》
    kafka环境安装及简单使用(单机版)
    Protobuf的上手使用
    Java8新特性概览
    Mock测试框架(Mockito为例)
    Java序列化与反序列化
    系统/项目环境搭建
    关于Tomcat服务器中的协议及请求过程
  • 原文地址:https://www.cnblogs.com/moomcake/p/9385170.html
Copyright © 2020-2023  润新知