一道二合一的题目。两部分思维难度都不太高,但是也都很巧妙。尤其是主席树的(50)分,由于本人初学主席树,所以没有见过主席树上二分的套路,就被小小的卡了一下。。
(n <= 200) (and) (m <= 200):前缀和+二分
(n <= 1) (and) (m <= 500000):主席树+二分,即对主席树每个节点维护一个权值和和本数和。关于最后的一个小细节,下面图片有讲解:
#include <bits/stdc++.h>
using namespace std;
int n, m, t;
void subtask_2 () {
const int N = 210, M = 1010;
static int rec[N][N], sum[N][N][M], num[N][N][M];
for (int i = 1; i <= n; ++i) {
for (int j = 1; j <= m; ++j) {
cin >> rec[i][j];
for (int k = rec[i][j]; k >= 1; --k) {
sum[i][j][k] = rec[i][j]; //[1, 1] -> [i, j] 间页数 >= k 的书页数和
num[i][j][k] = 1; //[1, 1] -> [i, j] 间页数 >= k 的书本数和
}
}
}
for (int i = 1; i <= n; ++i) {
for (int j = 1; j <= m; ++j) {
for (int k = 1; k <= 1000; ++k) {
sum[i][j][k] += sum[i - 1][j][k] + sum[i][j - 1][k] - sum[i - 1][j - 1][k];
num[i][j][k] += num[i - 1][j][k] + num[i][j - 1][k] - num[i - 1][j - 1][k];
}
}
}
for (int i = 1; i <= t; ++i) {
static int a1, b1, a2, b2, h;
cin >> a1 >> b1 >> a2 >> b2 >> h;
int l = 1, r = 1000;
while (l < r) {
int mid = (l + r + 1) >> 1;
if (sum[a2][b2][mid] - sum[a2][b1 - 1][mid] - sum[a1 - 1][b2][mid] + sum[a1 - 1][b1 - 1][mid] >= h) {
l = mid;
} else {
r = mid - 1;
}
}
int _num = num[a2][b2][l] - num[a2][b1 - 1][l] - num[a1 - 1][b2][l] + num[a1 - 1][b1 - 1][l];
int _sum = sum[a2][b2][l] - sum[a2][b1 - 1][l] - sum[a1 - 1][b2][l] + sum[a1 - 1][b1 - 1][l];
while (_sum - l >= h) _sum -= l, _num -= 1;
if (_sum < h) {
puts ("Poor QLW");
} else {
cout << _num << endl;
}
}
}
const int N = 500010;
static int tot = 0, rt[N], arr[N];
struct Segment_Tree {
struct Segment_Node {
int ls, rs, sz, sum;
}t[N << 5];
int modify (int root, int l, int r, int _val) {
int p = ++tot, mid = (l + r) >> 1;
t[p].ls = t[root].ls;
t[p].rs = t[root].rs;
t[p].sz = t[root].sz + 1;
t[p].sum = t[root].sum + _val;
if (l != r) {
if (_val <= mid) {
t[p].ls = modify (t[root].ls, l, mid, _val);
} else {
t[p].rs = modify (t[root].rs, mid + 1, r, _val);
}
}
return p;
}
int build (int l, int r) {
int p = ++tot, mid = (l + r) >> 1;
t[p].sz = t[p].sum = 0;
if (l != r) {
t[p].ls = build (l, mid);
t[p].rs = build (mid + 1, r);
} else {
t[p].ls = t[p].rs = 0;
}
return p;
}
int query (int u, int v, int l, int r, int k) {
int ans = 0;
while (l < r) {
int mid = (l + r) >> 1;
int lch = t[t[v].rs].sum - t[t[u].rs].sum;
if (lch < k) {
ans += t[t[v].rs].sz - t[t[u].rs].sz, k -= lch;
r = mid;
v = t[v].ls, u = t[u].ls;
} else {
l = mid + 1;
v = t[v].rs, u = t[u].rs;
}
}
ans += ceil ((1.0 * k) / (1.0 * l));
return ans;
}
// int query (int u, int v, int l, int r, int sumw) {
// int mid = (l + r) >> 1;
// int del = t[t[v].ls].sum - t[t[u].ls].sum, ans = 0;
// if (l != r) {
// if (sumw <= del) {
// ans += query (t[u].ls, t[v].ls, l, mid, sumw);
// } else {
// ans += del;
// ans += query (t[u].rs, t[v].rs, mid + 1, r, sumw - del);
// }
// }
// return ans;
// }
}tree;
void subtask_1 () {
rt[0] = tree.build (1, 1000);
for (int i = 1; i <= m; ++i) {
cin >> arr[i];
rt[i] = tree.modify (rt[i - 1], 1, 1000, arr[i]);
}
for (int i = 1; i <= t; ++i) {
static int a1, b1, a2, b2, h;
cin >> a1 >> b1 >> a2 >> b2 >> h;
if (tree.t[rt[b2]].sum - tree.t[rt[b1 - 1]].sum < h) {
puts ("Poor QLW");
} else {
cout << tree.query (rt[b1 - 1], rt[b2], 1, 1000, h) << endl;
}
}
}
int main () {
freopen ("2468.in", "r", stdin);
cin >> n >> m >> t;
if (n == 1) subtask_1 ();
if (n != 1) subtask_2 ();
}