• POJ 1127 Jack Straws


    Jack Straws
    Time Limit: 1000MS   Memory Limit: 10000K
    Total Submissions: 2942   Accepted: 1331

    Description

    In the game of Jack Straws, a number of plastic or wooden "straws" are dumped on the table and players try to remove them one-by-one without disturbing the other straws. Here, we are only concerned with if various pairs of straws are connected by a path of touching straws. You will be given a list of the endpoints for some straws (as if they were dumped on a large piece of graph paper) and then will be asked if various pairs of straws are connected. Note that touching is connecting, but also two straws can be connected indirectly via other connected straws.

    Input

    Input consist multiple case,each case consists of multiple lines. The first line will be an integer n (1 < n < 13) giving the number of straws on the table. Each of the next n lines contain 4 positive integers,x1,y1,x2 and y2, giving the coordinates, (x1,y1),(x2,y2) of the endpoints of a single straw. All coordinates will be less than 100. (Note that the straws will be of varying lengths.) The first straw entered will be known as straw #1, the second as straw #2, and so on. The remaining lines of the current case(except for the final line) will each contain two positive integers, a and b, both between 1 and n, inclusive. You are to determine if straw a can be connected to straw b. When a = 0 = b, the current case is terminated. 

    When n=0,the input is terminated. 

    There will be no illegal input and there are no zero-length straws. 

    Output

    You should generate a line of output for each line containing a pair a and b, except the final line where a = 0 = b. The line should say simply "CONNECTED", if straw a is connected to straw b, or "NOT CONNECTED", if straw a is not connected to straw b. For our purposes, a straw is considered connected to itself.

    Sample Input

    7
    1 6 3 3 
    4 6 4 9 
    4 5 6 7 
    1 4 3 5 
    3 5 5 5 
    5 2 6 3 
    5 4 7 2 
    1 4 
    1 6 
    3 3 
    6 7 
    2 3 
    1 3 
    0 0
    
    2
    0 2 0 0
    0 0 0 1
    1 1
    2 2
    1 2
    0 0
    
    0

    Sample Output

    CONNECTED 
    NOT CONNECTED 
    CONNECTED 
    CONNECTED 
    NOT CONNECTED 
    CONNECTED
    CONNECTED
    CONNECTED
    CONNECTED

    Source

    给出二维平面上的一些线段,之后有一些询问,判断各对线段是否是连通的

    由于线段数比较少,可以先判断一遍每对线段之间是否是直接相连的,之后再用Floyd算法找出两条线段之间是否可以间接相连,最后对每组询问,可以直接O(1)给出答案

    判断两条线段是否有交点可以先求出两条线段所在直线的交点,之后再判断交点是否在两条线段上。

    在几何问题中,运用向量的内积和外积进行计算是非常方便的。对于二维向量p1=(x1,y1)和p2=(x2,y2),我们定义内积p1·p2=x1*x2+y1*y2,外积p1×p2=x1*y2-y1*x2。要判断点q是否在线段p1-p2上,只要先用外积跟据是否有(p1-q)×(p2-q)=0来判断点q是否在直线p1-p2上,再利用内积根据是否有(p1-q)·(p2-q)≤0来判断点q是否落在p1-p2之间。

    此题中还要注意边界情况,数据中可能存在两条线段在同一条直线上(即它们是平行的,或者说是共线的),但它们可能在端点处有公共点,这里我们要通过检查端点是否在另一条线段上来判断

      1 #include<iostream>
      2 #include<cstdio>
      3 #include<algorithm>
      4 #include<cmath>
      5 #define MAX_N 15
      6 
      7 using namespace std;
      8 
      9 double EPS=1e-10;
     10 
     11 double add(double a,double b)
     12 {
     13     if(fabs(a+b)<EPS*(fabs(a)+fabs(b)))
     14         return 0;
     15     return a+b;
     16 }
     17 
     18 struct P
     19 {
     20     double x,y;
     21 
     22     P(){}
     23 
     24     P(double x,double y):x(x),y(y){}
     25 
     26     P operator + (P p)
     27     {
     28         return P(add(x,p.x),add(y,p.y));
     29     }
     30 
     31     P operator - (P p)
     32     {
     33         return P(add(x,-p.x),add(y,-p.y));
     34     }
     35 
     36     P operator * (double d)
     37     {
     38         return P(x*d,y*d);
     39     }
     40 
     41     //内积
     42     double dot(P p)
     43     {
     44         return add(x*p.x,y*p.y);
     45     }
     46 
     47     //外积
     48     double det(P p)
     49     {
     50         return add(x*p.y,-y*p.x);
     51     }
     52 };
     53 
     54 //判断点q是否在线段p1-p2上
     55 bool on_seg(P p1,P p2,P q)
     56 {
     57     return (p1-q).det(p2-q)==0&&(p1-q).dot(p2-q)<=0;
     58 }
     59 
     60 //计算直线p1-p2与直线q1-q2的交点
     61 P intersection(P p1,P p2,P q1,P q2)
     62 {
     63     return p1+(p2-p1)*((q2-q1).det(q1-p1)/(q2-q1).det(p2-p1));
     64 }
     65 
     66 int n;
     67 P p[MAX_N],q[MAX_N];
     68 bool g[MAX_N][MAX_N];
     69 
     70 void solve()
     71 {
     72     for(int i=0;i<n;i++)
     73     {
     74         g[i][i]=true;
     75         for(int j=0;j<i;j++)
     76         {
     77             //判断木棍i和木棍j是否有公共点
     78             if((p[i]-q[i]).det(p[j]-q[j])==0)
     79             {
     80                 //平行时,判断是否可能在端点处有交点
     81                 g[i][j]=g[j][i]=on_seg(p[i],q[i],p[j])||on_seg(p[i],q[i],q[j])||on_seg(p[j],q[j],p[i])||on_seg(p[j],q[j],q[i]);
     82             }
     83             else
     84             {
     85                 //非平行时,先求出两直线交点再凑数交点是否在两条线段上
     86                 P r=intersection(p[i],q[i],p[j],q[j]);
     87                 g[i][j]=g[j][i]=on_seg(p[i],q[i],r)&&on_seg(p[j],q[j],r);
     88             }
     89         }
     90     }
     91 
     92     //通过Floyd-Warshall算法判断任意的两点间是否相连
     93     for(int k=0;k<n;k++)
     94         for(int i=0;i<n;i++)
     95             for(int j=0;j<n;j++)
     96                 g[i][j]|=g[i][k]&&g[k][j];
     97 }
     98 
     99 int main()
    100 {
    101     while(scanf("%d",&n)&&n)
    102     {
    103         for(int i=0;i<n;i++)
    104             scanf("%lf %lf %lf %lf",&p[i].x,&p[i].y,&q[i].x,&q[i].y);
    105         solve();
    106         int a,b;
    107         while(scanf("%d %d",&a,&b)&&(a||b))
    108             puts(g[a-1][b-1]?"CONNECTED":"NOT CONNECTED");
    109     }
    110 
    111     return 0;
    112 }
    [C++]
  • 相关阅读:
    Java泛型 T.class的获取
    Android ant自动打包脚本:自动替换友盟渠道、版本号、包名
    验证:mysql AUTO_INCREMENT 默认值是1
    双重OAuth 2.0架构
    使用coding、daocloud和docker打造markdown纯静态博客
    创业小坑:内网域名 在windows下能nslookup,但ping不通,也无法访问。而在linux下正常。
    freeradius 安装出错的解决办法
    与锤子手机HR的对话——创业没有联合创始人,CTO 等高管会把它当做自己的事业吗?
    LBS数据分析:使用地图展示统计数据——麻点图与麻数图
    PHP极客水平测试——给创业公司用的远程面试题
  • 原文地址:https://www.cnblogs.com/lzj-0218/p/3574380.html
Copyright © 2020-2023  润新知