Given a binary tree, determine if it is a valid binary search tree (BST).
Assume a BST is defined as follows:
- The left subtree of a node contains only nodes with keys less than the node's key.
- The right subtree of a node contains only nodes with keys greater than the node's key.
- Both the left and right subtrees must also be binary search trees.
Example 1:
2 / 1 3 Input: [2,1,3] Output: true
Example 2:
5 / 1 4 / 3 6 Input: [5,1,4,null,null,3,6] Output: false Explanation: The root node's value is 5 but its right child's value is 4.
Accepted
503,408
Submissions
1,894,765
/** * Definition for a binary tree node. * struct TreeNode { * int val; * TreeNode *left; * TreeNode *right; * TreeNode(int x) : val(x), left(NULL), right(NULL) {} * }; */ class Solution { public: bool isValidBST(TreeNode* root) { return isValid(root,NULL,NULL); } bool isValid(TreeNode *root, int *l, int *r) { if(NULL==root)return true; if((l&&root->val<=*l)||(r&&root->val>=*r))return false; return isValid(root->left,l,&root->val) && isValid(root->right,&root->val,r); } };
最简单的写法是递归, 但是注意c++这里不要用INT_MIN和INT_MAX, 因为有个test case会故意用这两个值来考导致fail. 用指针来绕过