• 优秀程序员不得不知道的20个位运算技巧


    一提起位运算,人们往往想到它的高效性,无论是嵌入式编程还是优化系统的核心代码,适当的运用位运算总是一种迷人的手段,或者当您求职的时候,在代码中写入适当的位运算也会让您的程序增加一丝亮点,最初当我读《编程之美》求“1的数目”时,我才开始觉得位运算是如此之美,后来读到 《Hacker’s Delight》,感慨到Henry S.Warren把位运算运用的如此神出鬼没,很多程序都十分精妙,我觉得在一个普通的程序中大量运用这样的代码的人简直是疯了!但掌握简单的位运算技巧还是必要的,所以今天写这篇博文把我积累的一些位运算技巧分享给大家,这些技巧不会是如求“1的数目”的技巧,是最基本的一行位运算技巧!

    Welcome To My BitTricks

    1.获得int型最大值

    int getMaxInt(){ return (1 << 31) - 1;//2147483647, 由于优先级关系,括号不可省略 }

    另一种写法

    int getMaxInt(){ return ~(1 << 31);//2147483647 }

    另一种写法

    1 int getMaxInt(){//有些编译器不适用 return (1 << -1) - 1;//2147483647 }

    C语言中不知道int占几个字节时候

    1 int getMaxInt(){ return ((unsigned int) - 1) >> 1;//2147483647 }

    2.获得int型最小值

    1 int getMinInt(){ return 1<<31;//-2147483648 }

    另一种写法

    1 int getMaxInt(){//有些编译器不适用 return 1 << -1;//-2147483648 }

    3.获得long类型的最大值

     C语言版

    1  long getMaxLong(){ return ((unsigned long) - 1) >> 1;//2147483647 }

    JAVA版

    1  long getMaxLong(){ return ((long)1 << 127) - 1;//9223372036854775807 }

    获得long最小值,和其他类型的最大值,小值同理. 

    4.乘以2运算
     int mulTwo(int n){//计算n*2 return n << 1; }
    5.除以2运算
     int divTwo(int n){//负奇数的运算不可用 return n >> 1;//除以2 }
    6.乘以2的m次方 
    int mulTwoPower(int n,int m){//计算n*(2^m) return n << m; }
    7.除以2的m次方
     int divTwoPower(int n,int m){//计算n/(2^m) return n >> m; }
    8.判断一个数的奇偶性
     boolean isOddNumber(int n){ return (n & 1) == 1; }
    9.不用临时变量交换两个数(面试常考) 
    C语言版
    void swap(int *a,int *b){ (*a) ^= (*b) ^= (*a) ^= (*b); }
    通用版(一些语言中得分开写)
    1 a ^= b;
    2 
    3 b ^= a;
    4 
    5 a ^= b;
    10.取绝对值(某些机器上,效率比n>0 ? n:-n 高)
    int abs(int n){ return (n ^ (n >> 31)) - (n >> 31); /* n>>31 取得n的符号,若n为正数,
    n>>

    31等于0,若n为负数,n>>31等于-1 若n为正数 n^0=0,数不变,若n为负数有n^-1 需要计算n和-1的补码,

    
    

    然后进行异或运算, 结果n变号并且为n的绝对值减1,再减去-1就是绝对值 */ }

    
    
    11.取两个数的最大值(某些机器上,效率比a>b ? a:b高)

    通用版 

    int max(int a,int b){ return b & ((a-b) >> 31) | a & (~(a-b) >> 31); /*如果a>=b,(a-b)>>31为0,否则为-1*/ }

    C语言版 

    int max(int x,int y){ return x ^ ((x ^ y) & -(x < y));
    12.取两个数的最小值(某些机器上,效率比a>b ? b:a高)

    通用版

     int min(int a,int b){ return a & ((a-b) >> 31) | b & (~(a-b) >> 31); /*如果a>=b,(a-b)>>31为0,否则为-1*/ }

    C语言版

     int min(int x,int y){ return y ^ ((x ^ y) & -(x < y));

    /*如果x

    13.判断符号是否相同
    boolean isSameSign(int x, int y){ //有0的情况例外 return (x ^ y) >= 0; // true 表示 x和y有相同的符号,
    
    false表示x,y有相反的符号。
    
    }
    14.计算2的n次方
     int getFactorialofTwo(int n){//n > 0 return 2 << (n-1);//2的n次方 }

    15.判断一个数是不是2的幂

    boolean isFactorialofTwo(int n){ return n > 0 ? (n & (n - 1)) == 0 : false; /*如果是2的幂,
    
    n一定是100... n-1就是1111.... 所以做与运算结果为0*/ }
    16.对2的n次方取余
    int quyu(int m,int n){//n为2的次方 return m & (n - 1); /*如果是2的幂,n一定是100... n-1就是1111....
    
    所以做与运算结果保留m在n范围的非0的位*/ }
    17.求两个整数的平均值
    int getAverage(int x, int y){ return (x + y) >> 1; }

    另一种写法

    int getAverage(int x, int y){ return ((x ^ y) >> 1) + (x & y);
    
    /*(x^y) >> 1得到x,y其中一个为1的位并除以2, x&y得到x,y都为1的部分,加一起就是平均数了*/ }
    
    下面是三个最基本对二进制位的操作 18.从低位到高位,取n的第m位 int getBit(int n, int m){ return (n >> (m-1)) & 1; }
    19.从低位到高位.将n的第m位置1
    int setBitToOne(int n, int m){ return n | (1 << (m-1)); /*将1左移m-1位找到第m位,得到000...1...000
    
    n在和这个数做或运算*/ }
    20.从低位到高位,将n的第m位置0
    int setBitToZero(int n, int m){ return n & ~(1 << (m-1));
    
    /* 将1左移m-1位找到第m位,取反后变成111...0...1111 n再和这个数做与运算*/
    
    }

    另附:另附一些对程序效率上没有实质提高的位运算技巧,一些也是位运算的常识(面试也许会遇到)

    计算n+1

    -~n;

    计算n-1

    ~-n;

    取相反数

    ~n+1;

    另一种写法

    (n^-1)+1;

    if(x==a) x=b;if(x==b) x=a;

    x=a^b^x;

    sign函数,参数为n,当n>0时候返回1,n<0时返回-1,n=0时返回0

    return !!n – (((unsigned)n >> 31) << 1);
  • 相关阅读:
    mysql数据库监控利器lepus天兔工具安装和部署
    通过zabbix自带api进行主机的批量添加操作
    svn服务器的搭建备份和还原和svnmanager的使用
    elasticsearch自动按天创建索引脚本
    nginx或者squid正向代理实现受限网站的访问
    mysql查询sending data占用大量时间的问题处理
    解决由腾讯qq浏览器引起win10系统桌面图标不停的闪烁问题
    缓存系列之四:redis持久化与redis主从复制
    缓存系列之三:redis安装及基本数据类型命令使用
    缓存系列之二:CDN与其他层面缓存
  • 原文地址:https://www.cnblogs.com/lvk618/p/3341706.html
Copyright © 2020-2023  润新知