• 算法笔记-Day_01(1001 害死人不偿命的(3n+1)猜想


    卡拉兹(Callatz)猜想:

    对任何一个正整数 n,如果它是偶数,那么把它砍掉一半;如果它是奇数,那么把 (3n+1) 砍掉一半。这样一直反复砍下去,最后一定在某一步得到 n=1。卡拉兹在 1950 年的世界数学家大会上公布了这个猜想,传说当时耶鲁大学师生齐动员,拼命想证明这个貌似很傻很天真的命题,结果闹得学生们无心学业,一心只证 (3n+1),以至于有人说这是一个阴谋,卡拉兹是在蓄意延缓美国数学界教学与科研的进展……

    我们今天的题目不是证明卡拉兹猜想,而是对给定的任一不超过 1000 的正整数 n,简单地数一下,需要多少步(砍几下)才能得到 n=1?

    输入格式:

    每个测试输入包含 1 个测试用例,即给出正整数 n 的值。

    输出格式:

    输出从 n 计算到 1 需要的步数。

    输入样例:

    3
    

    输出样例:

    5

    #include<stdio.h>
    
    int main(){
    	freopen("in.txt","r",stdin);
    	int a,ans = 0;
    	scanf("%d",&a);
    	
    	while(a != 1){//这里略微注意,等于1直接返回0
    		if(a%2 == 0){
    			a = a/2;
    			ans += 1;
    		}else{
    			a = (3 * a + 1) / 2;
    			ans += 1;	
    		}
    	}	
    	printf("%d",ans); 
    	return 0;	
    } 
    

      




  • 相关阅读:
    n-1位数
    关于VC预定义常量_WIN32,WIN32,_WIN64
    python中的闭包
    TCP粘包, UDP丢包, nagle算法
    C++中 explicit的用法
    为什么mysql索引要使用B+树,而不是B树,红黑树
    屏障和屏障属性
    带有超时的读写锁
    pthread_mutex_timedlock
    段错误以及调试方式
  • 原文地址:https://www.cnblogs.com/luyuan-chen/p/11410165.html
Copyright © 2020-2023  润新知