• 万字详解,JDK8 的 Lambda、Stream 和日期的使用详解


    Lambda 表达式的使用

    下面我们先使用一个简单的例子来看看Lambda的效果吧。

    比如我们对Map 的遍历 传统方式遍历如下:

    Map<String, String> map = new HashMap<>();
      map.put("a", "a");
      map.put("b", "b");
      map.put("c", "c");
      map.put("d", "d");
    
      System.out.println("map普通方式遍历:");
      for (String key : map.keySet()) {
       System.out.println("k=" + key + ",v=" + map.get(key));
      }

    使用Lambda进行遍历:

    System.out.println("map拉姆达表达式遍历:");
      map.forEach((k, v) -> {
       System.out.println("k=" + k + ",v=" + v);
     });

    List也同理,不过List还可以通过双冒号运算符遍历:

    List<String> list = new ArrayList<String>();
      list.add("a");
      list.add("bb");
      list.add("ccc");
      list.add("dddd");
      System.out.println("list拉姆达表达式遍历:");
      list.forEach(v -> {
       System.out.println(v);
      });
      System.out.println("list双冒号运算符遍历:");
      list.forEach(System.out::println);

    Stream使用

    这里我们依旧使用一个简单示例来看看吧。在开发中,我们有时需要对一些数据进行过滤,如果是传统的方式,我们需要对这批数据进行遍历过滤,会显得比较繁琐,如果使用steam流方式的话,那么可以很方便的进行处理。

    首先通过普通的方式进行过滤:

    List<String> list = Arrays.asList("张三", "李四", "王五", "xuwujing");
     System.out.println("过滤之前:" + list);
     List<String> result = new ArrayList<>();
     for (String str : list) {
      if (!"李四".equals(str)) {
       result.add(str);
      }
     }
     System.out.println("过滤之后:" + result);

    使用Steam方式进行过滤:

    List<String> result2 = list.stream().filter(str -> !"李四".equals(str)).collect(Collectors.toList());
    System.out.println("stream 过滤之后:" + result2);

    输出结果:

    过滤之前:[张三, 李四, 王五, xuwujing]
    过滤之后:[张三, 王五, xuwujing]
    stream 过滤之后:[张三, 王五, xuwujing]

    是不是很简洁和方便呢。其实Stream流还有更多的使用方法,filter只是其中的一角而已。那么在这里我们就来学习了解下这些用法吧。

    1.构造Stream流的方式

     Stream stream = Stream.of("a", "b", "c");
     String[] strArray = new String[] { "a", "b", "c" };
     stream = Stream.of(strArray);
     stream = Arrays.stream(strArray);
     List<String> list = Arrays.asList(strArray);
     stream = list.stream();

    2.Stream流的之间的转换

    注意:一个Stream流只可以使用一次,这段代码为了简洁而重复使用了数次,因此会抛出 stream has already been operated upon or closed 异常。

    try {
      Stream<String> stream2 = Stream.of("a", "b", "c");
      // 转换成 Array
      String[] strArray1 = stream2.toArray(String[]::new);
    
      // 转换成 Collection
      List<String> list1 = stream2.collect(Collectors.toList());
      List<String> list2 = stream2.collect(Collectors.toCollection(ArrayList::new));
      Set set1 = stream2.collect(Collectors.toSet());
      Stack stack1 = stream2.collect(Collectors.toCollection(Stack::new));
    
      // 转换成 String
      String str = stream.collect(Collectors.joining()).toString();
     } catch (Exception e) {
      e.printStackTrace();
     }

    3.Stream流的map使用

    map方法用于映射每个元素到对应的结果,一对一。

    示例一:转换大写

    List<String> list3 = Arrays.asList("zhangSan", "liSi", "wangWu");
     System.out.println("转换之前的数据:" + list3);
     List<String> list4 = list3.stream().map(String::toUpperCase).collect(Collectors.toList());
     System.out.println("转换之后的数据:" + list4);
     // 转换之后的数据:[ZHANGSAN, LISI,WANGWU]

    示例二:转换数据类型

     List<String> list31 = Arrays.asList("1", "2", "3");
     System.out.println("转换之前的数据:" + list31);
     List<Integer> list41 = list31.stream().map(Integer::valueOf).collect(Collectors.toList());
     System.out.println("转换之后的数据:" + list41);
     // [1, 2, 3]

    示例三:获取平方

    List<Integer> list5 = Arrays.asList(new Integer[] { 1, 2, 3, 4, 5 });
     List<Integer> list6 = list5.stream().map(n -> n * n).collect(Collectors.toList());
     System.out.println("平方的数据:" + list6);
     // [1, 4, 9, 16, 25]

    4.Stream流的filter使用

    filter方法用于通过设置的条件过滤出元素。

    示例二:通过与 findAny 得到 if/else 的值

    List<String> list = Arrays.asList("张三", "李四", "王五", "xuwujing");
    String result3 = list.stream().filter(str -> "李四".equals(str)).findAny().orElse("找不到!");
    String result4 = list.stream().filter(str -> "李二".equals(str)).findAny().orElse("找不到!");
    
    System.out.println("stream 过滤之后 2:" + result3);
    System.out.println("stream 过滤之后 3:" + result4);
    //stream 过滤之后 2:李四
    //stream 过滤之后 3:找不到!

    示例三:通过与 mapToInt 计算和

     List<User> lists = new ArrayList<User>();
     lists.add(new User(6, "张三"));
     lists.add(new User(2, "李四"));
     lists.add(new User(3, "王五"));
     lists.add(new User(1, "张三"));
     // 计算这个list中出现 "张三" id的值
     int sum = lists.stream().filter(u -> "张三".equals(u.getName())).mapToInt(u -> u.getId()).sum();
    
     System.out.println("计算结果:" + sum);

    5.Stream流的flatMap使用

    flatMap 方法用于映射每个元素到对应的结果,一对多。

    示例:从句子中得到单词

     String worlds = "The way of the future";
     List<String> list7 = new ArrayList<>();
     list7.add(worlds);
     List<String> list8 = list7.stream().flatMap(str -> Stream.of(str.split(" ")))
       .filter(world -> world.length() > 0).collect(Collectors.toList());
     System.out.println("单词:");
     list8.forEach(System.out::println);
     // 单词:
     // The
     // way
     // of
     // the
     // future

    6.Stream流的limit使用

    limit 方法用于获取指定数量的流。

    示例一:获取前n条数的数据

    Random rd = new Random();
     System.out.println("取到的前三条数据:");
     rd.ints().limit(3).forEach(System.out::println);
     // 取到的前三条数据:
     // 1167267754
     // -1164558977
     // 1977868798

    示例二:结合skip使用得到需要的数据

    skip表示的是扔掉前n个元素。

    List<User> list9 = new ArrayList<User>();
     for (int i = 1; i < 4; i++) {
      User user = new User(i, "pancm" + i);
      list9.add(user);
     }
     System.out.println("截取之前的数据:");
     // 取前3条数据,但是扔掉了前面的2条,可以理解为拿到的数据为 2<=i<3 (i 是数值下标)
     List<String> list10 = list9.stream().map(User::getName).limit(3).skip(2).collect(Collectors.toList());
     System.out.println("截取之后的数据:" + list10);
     //  截取之前的数据:
     //  姓名:pancm1
     //  姓名:pancm2
     //  姓名:pancm3
     //  截取之后的数据:[pancm3]

    注:User实体类中 getName 方法会打印姓名。

    7.Stream流的sort使用

    sorted方法用于对流进行升序排序。

    示例一:随机取值排序

     Random rd2 = new Random();
     System.out.println("取到的前三条数据然后进行排序:");
     rd2.ints().limit(3).sorted().forEach(System.out::println);
     // 取到的前三条数据然后进行排序:
     // -2043456377
     // -1778595703
     // 1013369565

    示例二:优化排序

    tips:先获取在排序效率会更高!

     //普通的排序取值
     List<User> list11 = list9.stream().sorted((u1, u2) -> u1.getName().compareTo(u2.getName())).limit(3)
       .collect(Collectors.toList());
     System.out.println("排序之后的数据:" + list11);
     //优化排序取值
     List<User> list12 = list9.stream().limit(3).sorted((u1, u2) -> u1.getName().compareTo(u2.getName()))
       .collect(Collectors.toList());
     System.out.println("优化排序之后的数据:" + list12);
     //排序之后的数据:[{"id":1,"name":"pancm1"}, {"id":2,"name":"pancm2"}, {"id":3,"name":"pancm3"}]
     //优化排序之后的数据:[{"id":1,"name":"pancm1"}, {"id":2,"name":"pancm2"}, {"id":3,"name":"pancm3"}]

    8.Stream流的peek使用

    peek对每个元素执行操作并返回一个新的Stream

    示例:双重操作

     System.out.println("peek使用:");
     Stream.of("one", "two", "three", "four").filter(e -> e.length() > 3).peek(e -> System.out.println("转换之前: " + e))
       .map(String::toUpperCase).peek(e -> System.out.println("转换之后: " + e)).collect(Collectors.toList());
    
     // 转换之前: three
     // 转换之后: THREE
     // 转换之前: four
     // 转换之后: FOUR

    9.Stream流的parallel使用

    parallelStream 是流并行处理程序的代替方法。

    示例:获取空字符串的数量

     List<String> strings = Arrays.asList("a", "", "c", "", "e","", " ");
     // 获取空字符串的数量
     long count =  strings.parallelStream().filter(string -> string.isEmpty()).count();
     System.out.println("空字符串的个数:"+count);

    10.Stream流的max/min/distinct使用

    示例一:得到最大最小值

    List<String> list13 = Arrays.asList("zhangsan","lisi","wangwu","xuwujing");
     int maxLines = list13.stream().mapToInt(String::length).max().getAsInt();
     int minLines = list13.stream().mapToInt(String::length).min().getAsInt();
     System.out.println("最长字符的长度:" + maxLines+",最短字符的长度:"+minLines);
     //最长字符的长度:8,最短字符的长度:4

    示例二:得到去重之后的数据

     String lines = "good good study day day up";
     List<String> list14 = new ArrayList<String>();
     list14.add(lines);
     List<String> words = list14.stream().flatMap(line -> Stream.of(line.split(" "))).filter(word -> word.length() > 0)
       .map(String::toLowerCase).distinct().sorted().collect(Collectors.toList());
     System.out.println("去重复之后:" + words);
     //去重复之后:[day, good, study, up]

    11.Stream流的Match使用

    • allMatch:Stream 中全部元素符合则返回 true ;
    • anyMatch:Stream 中只要有一个元素符合则返回 true;
    • noneMatch:Stream 中没有一个元素符合则返回 true。

    示例:数据是否符合

     boolean all = lists.stream().allMatch(u -> u.getId() > 3);
     System.out.println("是否都大于3:" + all);
     boolean any = lists.stream().anyMatch(u -> u.getId() > 3);
     System.out.println("是否有一个大于3:" + any);
     boolean none = lists.stream().noneMatch(u -> u.getId() > 3);
     System.out.println("是否没有一个大于3的:" + none);
     // 是否都大于3:false
     // 是否有一个大于3:true
     // 是否没有一个大于3的:false

    12.Stream流的reduce使用

    reduce 主要作用是把 Stream 元素组合起来进行操作。

    示例一:字符串连接

    String concat = Stream.of("A", "B", "C", "D").reduce("", String::concat);
    System.out.println("字符串拼接:" + concat);

    示例二:得到最小值

     double minValue = Stream.of(-4.0, 1.0, 3.0, -2.0).reduce(Double.MAX_VALUE, Double::min);
     System.out.println("最小值:" + minValue);
     //最小值:-4.0

    示例三:求和

    // 求和, 无起始值
     int sumValue = Stream.of(1, 2, 3, 4).reduce(Integer::sum).get();
     System.out.println("有无起始值求和:" + sumValue);
     // 求和, 有起始值
      sumValue = Stream.of(1, 2, 3, 4).reduce(1, Integer::sum);
      System.out.println("有起始值求和:" + sumValue);
     // 有无起始值求和:10
     // 有起始值求和:11

    示例四:过滤拼接

    concat = Stream.of("a", "B", "c", "D", "e", "F").filter(x -> x.compareTo("Z") > 0).reduce("", String::concat);
    System.out.println("过滤和字符串连接:" + concat);
     //过滤和字符串连接:ace

    13.Stream流的iterate使用

    iterate 跟 reduce 操作很像,接受一个种子值,和一个UnaryOperator(例如 f)。然后种子值成为 Stream 的第一个元素,f(seed) 为第二个,f(f(seed)) 第三个,以此类推。在 iterate 时候管道必须有 limit 这样的操作来限制 Stream 大小。

    示例:生成一个等差队列

     System.out.println("从2开始生成一个等差队列:");
     Stream.iterate(2, n -> n + 2).limit(5).forEach(x -> System.out.print(x + " "));
     // 从2开始生成一个等差队列:
     // 2 4 6 8 10

    14.Stream流的Supplier使用

    通过实现Supplier类的方法可以自定义流计算规则。

    示例:随机获取两条用户信息

     System.out.println("自定义一个流进行计算输出:");
     Stream.generate(new UserSupplier()).limit(2).forEach(u -> System.out.println(u.getId() + ", " + u.getName()));
    
     //第一次:
     //自定义一个流进行计算输出:
     //10, pancm7
     //11, pancm6
    
     //第二次:
     //自定义一个流进行计算输出:
     //10, pancm4
     //11, pancm2
    
     //第三次:
     //自定义一个流进行计算输出:
     //10, pancm4
     //11, pancm8
    
    
    class UserSupplier implements Supplier<User> {
     private int index = 10;
     private Random random = new Random();
    
     @Override
     public User get() {
      return new User(index++, "pancm" + random.nextInt(10));
     }
    }

    15.Stream流的groupingBy/partitioningBy使用

    • groupingBy:分组排序;
    • partitioningBy:分区排序。

    示例一:分组排序

    System.out.println("通过id进行分组排序:");
     Map<Integer, List<User>> personGroups = Stream.generate(new UserSupplier2()).limit(5)
       .collect(Collectors.groupingBy(User::getId));
     Iterator it = personGroups.entrySet().iterator();
     while (it.hasNext()) {
      Map.Entry<Integer, List<User>> persons = (Map.Entry) it.next();
      System.out.println("id " + persons.getKey() + " = " + persons.getValue());
     }
    
     // 通过id进行分组排序:
     // id 10 = [{"id":10,"name":"pancm1"}]
     // id 11 = [{"id":11,"name":"pancm3"}, {"id":11,"name":"pancm6"}, {"id":11,"name":"pancm4"}, {"id":11,"name":"pancm7"}]
    
    
    
     class UserSupplier2 implements Supplier<User> {
      private int index = 10;
      private Random random = new Random();
    
      @Override
      public User get() {
       return new User(index % 2 == 0 ? index++ : index, "pancm" + random.nextInt(10));
      }
     }

    示例二:分区排序

    System.out.println("通过年龄进行分区排序:");
     Map<Boolean, List<User>> children = Stream.generate(new UserSupplier3()).limit(5)
       .collect(Collectors.partitioningBy(p -> p.getId() < 18));
    
     System.out.println("小孩: " + children.get(true));
     System.out.println("成年人: " + children.get(false));
    
     // 通过年龄进行分区排序:
     // 小孩: [{"id":16,"name":"pancm7"}, {"id":17,"name":"pancm2"}]
     // 成年人: [{"id":18,"name":"pancm4"}, {"id":19,"name":"pancm9"}, {"id":20,"name":"pancm6"}]
    
      class UserSupplier3 implements Supplier<User> {
      private int index = 16;
      private Random random = new Random();
    
      @Override
      public User get() {
       return new User(index++, "pancm" + random.nextInt(10));
      }
     }

    16.Stream流的summaryStatistics使用

    IntSummaryStatistics 用于收集统计信息(如count、min、max、sum和average)的状态对象。

    示例:得到最大、最小、之和以及平均数。

     List<Integer> numbers = Arrays.asList(1, 5, 7, 3, 9);
     IntSummaryStatistics stats = numbers.stream().mapToInt((x) -> x).summaryStatistics();
    
     System.out.println("列表中最大的数 : " + stats.getMax());
     System.out.println("列表中最小的数 : " + stats.getMin());
     System.out.println("所有数之和 : " + stats.getSum());
     System.out.println("平均数 : " + stats.getAverage());
    
     // 列表中最大的数 : 9
     // 列表中最小的数 : 1
     // 所有数之和 : 25
     // 平均数 : 5.0

    LocalDateTime

    关键类

    • Instant:瞬时时间。
    • LocalDate:本地日期,不包含具体时间, 格式 yyyy-MM-dd。
    • LocalTime:本地时间,不包含日期. 格式 yyyy-MM-dd HH:mm:ss.SSS 。
    • LocalDateTime:组合了日期和时间,但不包含时差和时区信息。
    • ZonedDateTime:最完整的日期时间,包含时区和相对UTC或格林威治的时差。

    1.获取当前的日期时间

    通过静态工厂方法now()来获取当前时间。

     //本地日期,不包括时分秒
     LocalDate nowDate = LocalDate.now();
     //本地日期,包括时分秒
     LocalDateTime nowDateTime = LocalDateTime.now();
     System.out.println("当前时间:"+nowDate);
     System.out.println("当前时间:"+nowDateTime);
     //  当前时间:2018-12-19
     //  当前时间:2018-12-19T15:24:35.822

    2.获取当前的年月日时分秒

    获取时间之后,直接get获取年月日时分秒。

    //获取当前的时间,包括毫秒
      LocalDateTime ldt = LocalDateTime.now();
      System.out.println("当前年:"+ldt.getYear());   //2018
      System.out.println("当前年份天数:"+ldt.getDayOfYear());//172
      System.out.println("当前月:"+ldt.getMonthValue());
      System.out.println("当前时:"+ldt.getHour());
      System.out.println("当前分:"+ldt.getMinute());
      System.out.println("当前时间:"+ldt.toString());
     //   当前年:2018
     //   当前年份天数:353
     //   当前月:12
     //   当前时:15
     //   当前分:24
     //   当前时间:2018-12-19T15:24:35.833

    3.格式化时间

    格式时间格式需要用到DateTimeFormatter类。

    LocalDateTime ldt = LocalDateTime.now();
    System.out.println("格式化时间: "+ ldt.format(DateTimeFormatter.ofPattern("yyyy-MM-dd HH:mm:ss.SSS")));
    //格式化时间:2018-12-19 15:37:47.119

    4.时间增减

    在指定的时间进行增加/减少年月日时分秒。

     LocalDateTime ldt = LocalDateTime.now();
      System.out.println("后5天时间:"+ldt.plusDays(5));
      System.out.println("前5天时间并格式化:"+ldt.minusDays(5).format(DateTimeFormatter.ofPattern("yyyy-MM-dd"))); //2018-06-16
      System.out.println("前一个月的时间:"+ldt2.minusMonths(1).format(DateTimeFormatter.ofPattern("yyyyMM"))); //2018-06-16
      System.out.println("后一个月的时间:"+ldt2.plusMonths(1)); //2018-06-16
      System.out.println("指定2099年的当前时间:"+ldt.withYear(2099)); //2099-06-21T15:07:39.506
     //  后5天时间:2018-12-24T15:50:37.508
     //  前5天时间并格式化:2018-12-14
     //  前一个月的时间:201712
     //  后一个月的时间:2018-02-04T09:19:29.499
     //  指定2099年的当前时间:2099-12-19T15:50:37.508

    5.创建指定时间

    通过指定年月日来创建。

     LocalDate ld3=LocalDate.of(2017, Month.NOVEMBER, 17);
     LocalDate ld4=LocalDate.of(2018, 02, 11);

    6.时间相差比较

    比较相差的年月日时分秒。

    示例一: 具体相差的年月日

     LocalDate ld=LocalDate.parse("2017-11-17");
     LocalDate ld2=LocalDate.parse("2018-01-05");
     Period p=Period.between(ld, ld2);
     System.out.println("相差年: "+p.getYears()+" 相差月 :"+p.getMonths() +" 相差天:"+p.getDays());
     // 相差年: 0 相差月 :1 相差天:19

    注:这里的月份是不满足一年,天数是不满足一个月的。这里实际相差的是1月19天,也就是49天。

    示例二:相差总数的时间

    ChronoUnit 日期周期单位的标准集合。

     LocalDate startDate = LocalDate.of(2017, 11, 17);
            LocalDate endDate = LocalDate.of(2018, 01, 05);
            System.out.println("相差月份:"+ChronoUnit.MONTHS.between(startDate, endDate));
            System.out.println("两月之间的相差的天数   : " + ChronoUnit.DAYS.between(startDate, endDate));
      //        相差月份:1
      //        两天之间的差在天数   : 49

    注:ChronoUnit也可以计算相差时分秒。

    示例三:精度时间相差

    Duration 这个类以秒和纳秒为单位建模时间的数量或数量。

    Instant inst1 = Instant.now();
        System.out.println("当前时间戳 : " + inst1);
        Instant inst2 = inst1.plus(Duration.ofSeconds(10));
        System.out.println("增加之后的时间 : " + inst2);
        System.out.println("相差毫秒 : " + Duration.between(inst1, inst2).toMillis());
        System.out.println("相毫秒 : " + Duration.between(inst1, inst2).getSeconds());
     // 当前时间戳 : 2018-12-19T08:14:21.675Z
     // 增加之后的时间 : 2018-12-19T08:14:31.675Z
     // 相差毫秒 : 10000
     // 相毫秒 : 10

    示例四:时间大小比较

     LocalDateTime ldt4 = LocalDateTime.now();
      LocalDateTime ldt5 = ldt4.plusMinutes(10);
      System.out.println("当前时间是否大于:"+ldt4.isAfter(ldt5));
      System.out.println("当前时间是否小于"+ldt4.isBefore(ldt5));
      // false
      // true

    7.时区时间计算

    得到其他时区的时间。

    示例一:通过Clock时钟类获取计算

    Clock时钟类用于获取当时的时间戳,或当前时区下的日期时间信息。

     Clock clock = Clock.systemUTC();
      System.out.println("当前时间戳 : " + clock.millis());
      Clock clock2 = Clock.system(ZoneId.of("Asia/Shanghai"));
      System.out.println("亚洲上海此时的时间戳:"+clock2.millis());
      Clock clock3 = Clock.system(ZoneId.of("America/New_York"));
      System.out.println("美国纽约此时的时间戳:"+clock3.millis());
      //  当前时间戳 : 1545209277657
      //  亚洲上海此时的时间戳:1545209277657
      //  美国纽约此时的时间戳:1545209277658

    示例二:通过ZonedDateTime类和ZoneId

    ZoneId zoneId= ZoneId.of("America/New_York");
      ZonedDateTime dateTime=ZonedDateTime.now(zoneId);
      System.out.println("美国纽约此时的时间 : " + dateTime.format(DateTimeFormatter.ofPattern("yyyy-MM-dd HH:mm:ss.SSS")));
      System.out.println("美国纽约此时的时间 和时区: " + dateTime);
      //  美国纽约此时的时间 : 2018-12-19 03:52:22.494
      // 美国纽约此时的时间 和时区: 2018-12-19T03:52:22.494-05:00[America/New_York]

    Java 8日期时间API总结:

    • 提供了javax.time.ZoneId 获取时区。
    • 提供了LocalDate和LocalTime类。
    • Java 8 的所有日期和时间API都是不可变类并且线程安全,而现有的Date和Calendar API中的java.util.Date和SimpleDateFormat是非线程安全的。
    • 主包是 java.time,包含了表示日期、时间、时间间隔的一些类。里面有两个子包java.time.format用于格式化, java.time.temporal用于更底层的操作。
    • 时区代表了地球上某个区域内普遍使用的标准时间。每个时区都有一个代号,格式通常由区域/城市构成(Asia/Tokyo),在加上与格林威治或 UTC的时差。例如:东京的时差是+09:00。
    • OffsetDateTime类实际上组合了LocalDateTime类和ZoneOffset类。用来表示包含和格林威治或UTC时差的完整日期(年、月、日)和时间(时、分、秒、纳秒)信息。
    • DateTimeFormatter 类用来格式化和解析时间。与SimpleDateFormat不同,这个类不可变并且线程安全,需要时可以给静态常量赋值。DateTimeFormatter类提供了大量的内置格式化工具,同时也允许你自定义。在转换方面也提供了parse()将字符串解析成日期,如果解析出错会抛出DateTimeParseException。DateTimeFormatter类同时还有format()用来格式化日期,如果出错会抛出DateTimeException异常。
    • 再补充一点,日期格式“MMM d yyyy”和“MMM dd yyyy”有一些微妙的不同,第一个格式可以解析“Jan 2 2014”和“Jan 14 2014”,而第二个在解析“Jan 2 2014”就会抛异常,因为第二个格式里要求日必须是两位的。如果想修正,你必须在日期只有个位数时在前面补零,就是说“Jan 2 2014”应该写成 “Jan 02 2014”。
    故乡明
  • 相关阅读:
    关于action的使用在firefox报错的问题
    用rspec执行自动化测试用例
    webdriver实现简单的窗口切换
    一个小测试总结
    在Notepad++下运行ruby代码
    webdriver入门之环境准备
    我也来谈谈小米——《参与感》观后感
    测试发展生涯的困惑
    小谈关于互联网产品的测试
    转:API 接口渗透测试
  • 原文地址:https://www.cnblogs.com/luweiweicode/p/14207704.html
Copyright © 2020-2023  润新知