一、参考博客
二、前置知识
1.曼哈顿距离:给定二维平面上的N个点,在两点之间连边的代价。(即distance(P1,P2) = |x1-x2|+|y1-y2|)
2.曼哈顿距离最小生成树问题求什么?求使所有点连通的最小代价。
3.最小生成树
三、具体实现方式
朴素的算法可以用O(N2)的Prim,或者处理出所有边做Kruskal,但在这里总边数有O(N2)条,所以Kruskal的复杂度变成了O(N2logN)。
但是事实上,真正有用的边远没有O(N2)条。我们考虑每个点会和其他一些什么样的点连边。
可以得出这样一个结论:以一个点为原点建立直角坐标系,在每45度内只会向距离该点最近的一个点连边。
证明结论:假设我们以点A为原点建系,考虑在y轴向右45度区域内的任意两点B(x1,y1)和C(x2,y2),不妨设|AB|≤|AC|(这里的距离为曼哈顿距离),如下图:
|AB|=x1+y1,|AC|=x2+y2,|BC|=|x1-x2|+|y1-y2|。而由于B和C都在y轴向右45度的区域内,有y-x>0且x>0。下面我们分情况讨论:
x1>x2且y1>y2。这与|AB|≤|AC|矛盾;
x1≤x2且y1>y2。此时|BC|=x2-x1+y1-y2,|AC|-|BC|=x2+y2-x2+x1-y1+y2=x1-y1+2y2。由前面各种关系可得y1>y2>x2>x1。假设|AC|<|BC|即y1>2y2+x1,那么|AB|=x1+y1>2x1+2y2,|AC|=x2+y2<2*y2<|AB|与前提矛盾,故|AC|≥|BC|;
x1>x2且y1≤y2。与2同理;
x1≤x2且y1≤y2。此时显然有|AB|+|BC|=|AC|,即有|AC|>|BC|。
综上有|AC|≥|BC|,也即在这个区域内只需选择距离A最近的点向A连边。
这种连边方式可以保证边数是O(N)的,那么如果能高效处理出这些边,就可以用Kruskal在O(NlogN)的时间内解决问题。下面我们就考虑怎样高效处理边。
我们只需考虑在一块区域内的点,其他区域内的点可以通过坐标变换“移动”到这个区域内。为了方便处理,我们考虑在y轴向右45度的区域。在某个点A(x0,y0)的这个区域内的点B(x1,y1)满足x1≥x0且y1-x1>y0-x0。这里对于边界我们只取一边,但是操作中两边都取也无所谓。那么|AB|=y1-y0+x1-x0=(x1+y1)-(x0+y0)。在A的区域内距离A最近的点也即满足条件的点中x+y最小的点。因此我们可以将所有点按x坐标排序,再按y-x离散,用线段树或者树状数组维护大于当前点的y-x的最小的x+y对应的点。时间复杂度O(NlogN)。
至于坐标变换,一个比较好处理的方法是第一次直接做;第二次沿直线y=x翻转,即交换x和y坐标;第三次沿直线x=0翻转,即将x坐标取相反数;第四次再沿直线y=x翻转。注意只需要做4次,因为边是双向的。
至此,整个问题就可以在O(NlogN)的复杂度内解决了。
【回到正题】
一个点把平面分成了8个部分:
由上面的废话可知,我们只需要让这个点与每个部分里距它最近的点连边。
拿R1来说吧:
如图,i的R1区域里距i最近的点是j。也就是说,其他点k都有:
xj + yj <= xk + yk
那么k将落在如下阴影部分:
显然,边(i,j), (j,k), (i,k)构成一个环<i,j,k>,而(i,k)一定是最长边,可以被删去。所以我们只连边(i,j)。
为了避免重复加边,我们只考虑R1~R4这4个区域。(总共加了4N条边)
这4个区域的点(x,y)要满足什么条件?
如果点(x,y)在R1,它要满足:x ≥ xi ,y – x ≥ yi – xi(最近点的x + y最小)
如果点(x,y)在R2,它要满足:y ≥ yi ,y – x ≤ yi – xi(最近点的x + y最小)
如果点(x,y)在R3,它要满足:y ≤ yi ,y + x ≥ yi + xi(最近点的y – x最小)
如果点(x,y)在R4,它要满足:x ≥ xi ,y + x ≤ yi – xi(最近点的y – x最小)
其中一个条件用排序,另一个条件用数据结构(这种方法很常用),在数据结构上询问,找最近点。因为询问总是前缀或后缀,所以可以用树状数组。
#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<string>
#include<cmath>
#include<queue>
#include<bitset>
#include<set>
#include<stack>
#include<map>
#include<list>
#include<new>
#include<vector>
#define MT(a,b) memset(a,b,sizeof(a));
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
const double pi=acos(-1.0);
const double E=2.718281828459;
const ll mod=1e8+7;
const int INF=0x3f3f3f3f;
int n,k;
struct node{
int x;
int y;
int id;
bool friend operator<(node a,node b){
return a.x==b.x?a.y<b.y:a.x<b.x;
///保证树状数组更新和查询时不会遗漏
}
}point[10005];
struct edge{
int s;
int e;
int c;
bool friend operator<(edge a,edge b){
return a.c<b.c;
}
}load[40000];
int sign=0;
int p[10005];
int find(int x){
return p[x]==x?x:p[x]=find(p[x]);
}
void kruskal(){
for(int i=1;i<=n;i++)
p[i]=i;
sort(load+1,load+1+sign);
int cnt=0;
for(int i=1;i<=sign;i++){
int x=find(load[i].s);
int y=find(load[i].e);
if(x!=y){
cnt++;
p[x]=y;
if(cnt==n-k){
printf("%d
",load[i].c);
return ;
}
}
}
}
int id[10005]; ///y-x为索引的编号
int xy[10005]; ///y-x为索引 x+y的最小值
void update(int index,int minn,int s) ///index:y-x minn:x+y s:编号
{
index+=1000;
for(int i=index;i>=1;i-=(i&(-i))){
if(xy[i]>minn){
xy[i]=minn;
id[i]=s;
}
}
}
void query(int index,int minn,int s) ///index:y-x minn:x+y s:编号
{
index+=1000;
int e=-1,c=INF;
///现在以编号s为原点,查询y-x>=index的点中x+y的最小值
for(int i=index;i<10000;i+=(i&(-i))){
if(xy[i]<c){
e=id[i];
c=xy[i];
}
}
if(e!=-1)
load[++sign]=edge{s,e,c-minn};
}
void build_edge()
{
/// 以(xi,yi)为原点,对于第1区域内的点(x,y)满足条件
/// x>=xi,y-x>=yi-xi,(x+y)最小
sort(point+1,point+1+n);
memset(id,-1,sizeof(id));
fill(xy,xy+10005,INF);
///按照x升序
///保证后面查询时,x都比当前的x大
for(int i=n;i>=1;i--){
int index=point[i].y-point[i].x;
int minn=point[i].x+point[i].y;
query(index,minn,point[i].id);
update(index,minn,point[i].id);
}
}
int main() ///第K大边
{
scanf("%d %d",&n,&k);
for(int i=1;i<=n;i++){
scanf("%d %d",&point[i].x,&point[i].y);
point[i].id=i;
}
///1象限建边
build_edge();
///2象限建边
for(int i=1;i<=n;i++)
swap(point[i].x,point[i].y);
build_edge();
///3象限建边
for(int i=1;i<=n;i++)
point[i].x=-point[i].x;
build_edge();
///4象限建边
for(int i=1;i<=n;i++)
swap(point[i].x,point[i].y);
build_edge();
kruskal();
return 0;
}