• Lucene学习总结之七:Lucene搜索过程解析 2014-06-25 14:23 863人阅读 评论(1) 收藏


    一、Lucene搜索过程总论

    搜索的过程总的来说就是将词典及倒排表信息从索引中读出来,根据用户输入的查询语句合并倒排表,得到结果文档集并对文档进行打分的过程。

    其可用如下图示:

    searchprocess_thumb6

    总共包括以下几个过程:

    1. IndexReader打开索引文件,读取并打开指向索引文件的流。
    2. 用户输入查询语句
    3. 将查询语句转换为查询对象Query对象树
    4. 构造Weight对象树,用于计算词的权重Term Weight,也即计算打分公式中与仅与搜索语句相关与文档无关的部分(红色部分)。
    5. 构造Scorer对象树,用于计算打分(TermScorer.score())。
    6. 在构造Scorer对象树的过程中,其叶子节点的TermScorer会将词典和倒排表从索引中读出来。
    7. 构造SumScorer对象树,其是为了方便合并倒排表对Scorer对象树的从新组织,它的叶子节点仍为TermScorer,包含词典和倒排表。此步将倒排表合并后得到结果文档集,并对结果文档计算打分公式中的蓝色部分。打分公式中的求和符合,并非简单的相加,而是根据子查询倒排表的合并方式(与或非)来对子查询的打分求和,计算出父查询的打分。
    8. 将收集的结果集合及打分返回给用户。

    二、Lucene搜索详细过程

    为了解析Lucene对索引文件搜索的过程,预先写入索引了如下几个文件:

    file01.txt: apple apples cat dog

    file02.txt: apple boy cat category

    file03.txt: apply dog eat etc

    file04.txt: apply cat foods

    2.1、打开IndexReader指向索引文件夹

    代码为:

    IndexReader reader = IndexReader.open(FSDirectory.open(indexDir));

    其实是调用了DirectoryReader.open(Directory, IndexDeletionPolicy, IndexCommit, boolean, int) 函数,其主要作用是生成一个SegmentInfos.FindSegmentsFile对象,并用它来找到此索引文件中所有的段,并打开这些段。

    SegmentInfos.FindSegmentsFile.run(IndexCommit commit)主要做以下事情:

    2.1.1、找到最新的segment_N文件

    • 由于segment_N是整个索引中总的元数据,因而正确的选择segment_N更加重要。
    • 然而有时候为了使得索引能够保存在另外的存储系统上,有时候需要用NFS mount一个远程的磁盘来存放索引,然而NFS为了提高性能,在本地有Cache,因而有可能使得此次打开的索引不是另外的writer写入的最新信息,所以在此处用了双保险。
    • 一方面,列出所有的segment_N,并取出其中的最大的N,设为genA

    String[] files = directory.listAll();

    long genA = getCurrentSegmentGeneration(files);

    long getCurrentSegmentGeneration(String[] files) {

        long max = -1;

        for (int i = 0; i < files.length; i++) {

          String file = files[i];

          if (file.startsWith(IndexFileNames.SEGMENTS) //"segments_N"

              && !file.equals(IndexFileNames.SEGMENTS_GEN)) { //"segments.gen"

            long gen = generationFromSegmentsFileName(file);

            if (gen > max) {

              max = gen;

            }

          }

        }

        return max;

      }

    • 另一方面,打开segment.gen文件,从中读出N,设为genB

    IndexInput genInput = directory.openInput(IndexFileNames.SEGMENTS_GEN);

    int version = genInput.readInt();

    long gen0 = genInput.readLong();

    long gen1 = genInput.readLong();

    if (gen0 == gen1) {

        genB = gen0;

    }

    • 在genA和genB中去较大者,为gen,并用此gen构造要打开的segments_N的文件名

    if (genA > genB)

        gen = genA;

    else

        gen = genB;

    String segmentFileName = IndexFileNames.fileNameFromGeneration(IndexFileNames.SEGMENTS, "", gen); //segmentFileName    "segments_4"   

    2.1.2、通过segment_N文件中保存的各个段的信息打开各个段

    • 从segment_N中读出段的元数据信息,生成SegmentInfos

    SegmentInfos infos = new SegmentInfos();

    infos.read(directory, segmentFileName);

    SegmentInfos.read(Directory, String) 代码如下:

    int format = input.readInt();

    version = input.readLong();

    counter = input.readInt();

    for (int i = input.readInt(); i > 0; i—) {

      //读出每一个段,并构造SegmentInfo对象

      add(new SegmentInfo(directory, format, input));

    }

    SegmentInfo(Directory dir, int format, IndexInput input)构造函数如下:

    name = input.readString();

    docCount = input.readInt();

    delGen = input.readLong();

    docStoreOffset = input.readInt();

    if (docStoreOffset != -1) {

      docStoreSegment = input.readString();

      docStoreIsCompoundFile = (1 == input.readByte());

    } else {

      docStoreSegment = name;

      docStoreIsCompoundFile = false;

    }

    hasSingleNormFile = (1 == input.readByte());

    int numNormGen = input.readInt();

    normGen = new long[numNormGen];

    for(int j=0;j

      normGen[j] = input.readLong();

    }

    isCompoundFile = input.readByte();

    delCount = input.readInt();

    hasProx = input.readByte() == 1;

    其实不用多介绍,看过Lucene学习总结之三:Lucene的索引文件格式 (2)一章,就很容易明白。

    • 根据生成的SegmentInfos打开各个段,并生成ReadOnlyDirectoryReader

    SegmentReader[] readers = new SegmentReader[sis.size()];

    for (int i = sis.size()-1; i >= 0; i—) {

       //打开每一个段

       readers[i] = SegmentReader.get(readOnly, sis.info(i), termInfosIndexDivisor);

    }

    SegmentReader.get(boolean, Directory, SegmentInfo, int, boolean, int) 代码如下:

    instance.core = new CoreReaders(dir, si, readBufferSize, termInfosIndexDivisor);

    instance.core.openDocStores(si); //生成用于读取存储域和词向量的对象。

    instance.loadDeletedDocs(); //读取被删除文档(.del)文件

    instance.openNorms(instance.core.cfsDir, readBufferSize); //读取标准化因子(.nrm)

    CoreReaders(Directory dir, SegmentInfo si, int readBufferSize, int termsIndexDivisor)构造函数代码如下:

    cfsReader = new CompoundFileReader(dir, segment + "." + IndexFileNames.COMPOUND_FILE_EXTENSION, readBufferSize); //读取cfs的reader

    fieldInfos = new FieldInfos(cfsDir, segment + "." + IndexFileNames.FIELD_INFOS_EXTENSION); //读取段元数据信息(.fnm)

    TermInfosReader reader = new TermInfosReader(cfsDir, segment, fieldInfos, readBufferSize, termsIndexDivisor); //用于读取词典信息(.tii .tis)

    freqStream = cfsDir.openInput(segment + "." + IndexFileNames.FREQ_EXTENSION, readBufferSize); //用于读取freq

    proxStream = cfsDir.openInput(segment + "." + IndexFileNames.PROX_EXTENSION, readBufferSize); //用于读取prox

    FieldInfos(Directory d, String name)构造函数如下:

    IndexInput input = d.openInput(name);

    int firstInt = input.readVInt();

    size = input.readVInt();

    for (int i = 0; i < size; i++) {

      //读取域名

      String name = StringHelper.intern(input.readString());

      //读取域的各种标志位

      byte bits = input.readByte();

      boolean isIndexed = (bits & IS_INDEXED) != 0;

      boolean storeTermVector = (bits & STORE_TERMVECTOR) != 0;

      boolean storePositionsWithTermVector = (bits & STORE_POSITIONS_WITH_TERMVECTOR) != 0;

      boolean storeOffsetWithTermVector = (bits & STORE_OFFSET_WITH_TERMVECTOR) != 0;

      boolean omitNorms = (bits & OMIT_NORMS) != 0;

      boolean storePayloads = (bits & STORE_PAYLOADS) != 0;

      boolean omitTermFreqAndPositions = (bits & OMIT_TERM_FREQ_AND_POSITIONS) != 0;

      //将读出的域生成FieldInfo对象,加入fieldinfos进行管理

      addInternal(name, isIndexed, storeTermVector, storePositionsWithTermVector, storeOffsetWithTermVector, omitNorms, storePayloads, omitTermFreqAndPositions);

    }

    CoreReaders.openDocStores(SegmentInfo)主要代码如下:

    fieldsReaderOrig = new FieldsReader(storeDir, storesSegment, fieldInfos, readBufferSize, si.getDocStoreOffset(), si.docCount); //用于读取存储域(.fdx, .fdt)

    termVectorsReaderOrig = new TermVectorsReader(storeDir, storesSegment, fieldInfos, readBufferSize, si.getDocStoreOffset(), si.docCount); //用于读取词向量(.tvx, .tvd, .tvf)

    • 初始化生成的ReadOnlyDirectoryReader,对打开的多个SegmentReader中的文档编号

    在Lucene中,每个段中的文档编号都是从0开始的,而一个索引有多个段,需要重新进行编号,于是维护数组start[],来保存每个段的文档号的偏移量,从而第i个段的文档号是从start[i]至start[i]+Num

    private void initialize(SegmentReader[] subReaders) {

      this.subReaders = subReaders;

      starts = new int[subReaders.length + 1];

      for (int i = 0; i < subReaders.length; i++) {

        starts[i] = maxDoc;

        maxDoc += subReaders[i].maxDoc();

        if (subReaders[i].hasDeletions())

          hasDeletions = true;

      }

      starts[subReaders.length] = maxDoc;

    }

    2.1.3、得到的IndexReader对象如下

    reader    ReadOnlyDirectoryReader  (id=466)    
        closed    false    
        deletionPolicy    null 

        //索引文件夹   
        directory    SimpleFSDirectory  (id=31)    
            checked    false    
            chunkSize    104857600    
            directory    File  (id=487)    
                path    "D://lucene-3.0.0//TestSearch//index"    
                prefixLength    3    
            isOpen    true    
            lockFactory    NativeFSLockFactory  (id=488)    
        hasChanges    false    
        hasDeletions    false    
        maxDoc    12    
        normsCache    HashMap  (id=483)    
        numDocs    -1    
        readOnly    true    
        refCount    1    
        rollbackHasChanges    false    
        rollbackSegmentInfos    null   

        //段元数据信息 
        segmentInfos    SegmentInfos  (id=457)     
            elementCount    3    
            elementData    Object[10]  (id=532)    
                [0]    SegmentInfo  (id=464)    
                    delCount    0    
                    delGen    -1    
                    diagnostics    HashMap  (id=537)    
                    dir    SimpleFSDirectory  (id=31)    
                    docCount    4    
                    docStoreIsCompoundFile    false    
                    docStoreOffset    -1    
                    docStoreSegment    "_0"    
                    files    null    
                    hasProx    true    
                    hasSingleNormFile    true    
                    isCompoundFile    1    
                    name    "_0"    
                    normGen    null    
                    preLockless    false    
                    sizeInBytes    -1    
                [1]    SegmentInfo  (id=517)    
                    delCount    0    
                    delGen    -1    
                    diagnostics    HashMap  (id=542)    
                    dir    SimpleFSDirectory  (id=31)    
                    docCount    4    
                    docStoreIsCompoundFile    false    
                    docStoreOffset    -1    
                    docStoreSegment    "_1"    
                    files    null    
                    hasProx    true    
                    hasSingleNormFile    true    
                    isCompoundFile    1    
                    name    "_1"    
                    normGen    null    
                    preLockless    false    
                    sizeInBytes    -1    
                [2]    SegmentInfo  (id=470)    
                    delCount    0    
                    delGen    -1    
                    diagnostics    HashMap  (id=547)    
                    dir    SimpleFSDirectory  (id=31)    
                    docCount    4    
                    docStoreIsCompoundFile    false    
                    docStoreOffset    -1    
                    docStoreSegment    "_2"    
                    files    null    
                    hasProx    true    
                    hasSingleNormFile    true    
                    isCompoundFile    1    
                    name    "_2"    
                    normGen    null    
                    preLockless    false    
                    sizeInBytes    -1     
            generation    4    
            lastGeneration    4    
            modCount    4    
            pendingSegnOutput    null    
            userData    HashMap  (id=533)    
            version    1268193441675    
        segmentInfosStart    null    
        stale    false    
        starts    int[4]  (id=484) 

        //每个段的Reader 
        subReaders    SegmentReader[3]  (id=467)    
            [0]    ReadOnlySegmentReader  (id=492)    
                closed    false    
                core    SegmentReader$CoreReaders  (id=495)    
                    cfsDir    CompoundFileReader  (id=552)    
                    cfsReader    CompoundFileReader  (id=552)    
                    dir    SimpleFSDirectory  (id=31)    
                    fieldInfos    FieldInfos  (id=553)    
                    fieldsReaderOrig    FieldsReader  (id=554)    
                    freqStream    CompoundFileReader$CSIndexInput  (id=555)    
                    proxStream    CompoundFileReader$CSIndexInput  (id=556)    
                    readBufferSize    1024    
                    ref    SegmentReader$Ref  (id=557)    
                    segment    "_0"    
                    storeCFSReader    null    
                    termsIndexDivisor    1    
                    termVectorsReaderOrig    null    
                    tis    TermInfosReader  (id=558)    
                    tisNoIndex    null    
                deletedDocs    null    
                deletedDocsDirty    false    
                deletedDocsRef    null    
                fieldsReaderLocal    SegmentReader$FieldsReaderLocal  (id=496)    
                hasChanges    false    
                norms    HashMap  (id=500)    
                normsDirty    false    
                pendingDeleteCount    0    
                readBufferSize    1024    
                readOnly    true    
                refCount    1    
                rollbackDeletedDocsDirty    false    
                rollbackHasChanges    false    
                rollbackNormsDirty    false    
                rollbackPendingDeleteCount    0    
                si    SegmentInfo  (id=464)    
                singleNormRef    SegmentReader$Ref  (id=504)    
                singleNormStream    CompoundFileReader$CSIndexInput  (id=506)    
                termVectorsLocal    CloseableThreadLocal  (id=508)    
            [1]    ReadOnlySegmentReader  (id=493)    
                closed    false    
                core    SegmentReader$CoreReaders  (id=511)    
                    cfsDir    CompoundFileReader  (id=561)    
                    cfsReader    CompoundFileReader  (id=561)    
                    dir    SimpleFSDirectory  (id=31)    
                    fieldInfos    FieldInfos  (id=562)    
                    fieldsReaderOrig    FieldsReader  (id=563)    
                    freqStream    CompoundFileReader$CSIndexInput  (id=564)    
                    proxStream    CompoundFileReader$CSIndexInput  (id=565)    
                    readBufferSize    1024    
                    ref    SegmentReader$Ref  (id=566)    
                    segment    "_1"    
                    storeCFSReader    null    
                    termsIndexDivisor    1    
                    termVectorsReaderOrig    null    
                    tis    TermInfosReader  (id=567)    
                    tisNoIndex    null    
                deletedDocs    null    
                deletedDocsDirty    false    
                deletedDocsRef    null    
                fieldsReaderLocal    SegmentReader$FieldsReaderLocal  (id=512)    
                hasChanges    false    
                norms    HashMap  (id=514)    
                normsDirty    false    
                pendingDeleteCount    0    
                readBufferSize    1024    
                readOnly    true    
                refCount    1    
                rollbackDeletedDocsDirty    false    
                rollbackHasChanges    false    
                rollbackNormsDirty    false    
                rollbackPendingDeleteCount    0    
                si    SegmentInfo  (id=517)    
                singleNormRef    SegmentReader$Ref  (id=519)    
                singleNormStream    CompoundFileReader$CSIndexInput  (id=520)    
                termVectorsLocal    CloseableThreadLocal  (id=521)    
            [2]    ReadOnlySegmentReader  (id=471)    
                closed    false    
                core    SegmentReader$CoreReaders  (id=475)    
                    cfsDir    CompoundFileReader  (id=476)    
                    cfsReader    CompoundFileReader  (id=476)    
                    dir    SimpleFSDirectory  (id=31)    
                    fieldInfos    FieldInfos  (id=480)    
                    fieldsReaderOrig    FieldsReader  (id=570)    
                    freqStream    CompoundFileReader$CSIndexInput  (id=571)    
                    proxStream    CompoundFileReader$CSIndexInput  (id=572)    
                    readBufferSize    1024    
                    ref    SegmentReader$Ref  (id=573)    
                    segment    "_2"    
                    storeCFSReader    null    
                    termsIndexDivisor    1    
                    termVectorsReaderOrig    null    
                    tis    TermInfosReader  (id=574)    
                    tisNoIndex    null    
                deletedDocs    null    
                deletedDocsDirty    false    
                deletedDocsRef    null    
                fieldsReaderLocal    SegmentReader$FieldsReaderLocal  (id=524)    
                hasChanges    false    
                norms    HashMap  (id=525)    
                normsDirty    false    
                pendingDeleteCount    0    
                readBufferSize    1024    
                readOnly    true    
                refCount    1    
                rollbackDeletedDocsDirty    false    
                rollbackHasChanges    false    
                rollbackNormsDirty    false    
                rollbackPendingDeleteCount    0    
                si    SegmentInfo  (id=470)    
                singleNormRef    SegmentReader$Ref  (id=527)    
                singleNormStream    CompoundFileReader$CSIndexInput  (id=528)    
                termVectorsLocal    CloseableThreadLocal  (id=530)    
        synced    HashSet  (id=485)    
        termInfosIndexDivisor    1    
        writeLock    null    
        writer    null   

    从上面的过程来看,IndexReader有以下几个特性:

    • 段元数据信息已经被读入到内存中,因而索引文件夹中因为新添加文档而新增加的段对已经打开的reader是不可见的。
    • .del文件已经读入内存,因而其他的reader或者writer删除的文档对打开的reader也是不可见的。
    • 打开的reader已经有inputstream指向cfs文件,从段合并的过程我们知道,一个段文件从生成起就不会改变,新添加的文档都在新的段中,删除的文档都在.del中,段之间的合并是生成新的段,而不会改变旧的段,只不过在段的合并过程中,会将旧的段文件删除,这没有问题,因为从操作系统的角度来讲,一旦一个文件被打开一个inputstream也即打开了一个文件描述符,在内核中,此文件会保持reference count,只要reader还没有关闭,文件描述符还在,文件是不会被删除的,仅仅reference count减一。
    • 以上三点保证了IndexReader的snapshot的性质,也即一个IndexReader打开一个索引,就好像对此索引照了一张像,无论背后索引如何改变,此IndexReader在被重新打开之前,看到的信息总是相同的。
    • 严格的来讲,Lucene的文档号仅仅对打开的某个reader有效,当索引发生了变化,再打开另外一个reader的时候,前面reader的文档0就不一定是后面reader的文档0了,因而我们进行查询的时候,从结果中得到文档号的时候,一定要在reader关闭之前应用,从存储域中得到真正能够唯一标识你的业务逻辑中的文档的信息,如url,md5等等,一旦reader关闭了,则文档号已经无意义,如果用其他的reader查询这些文档号,得到的可能是不期望的文档。

    2.2、打开IndexSearcher

    代码为:

    IndexSearcher searcher = new IndexSearcher(reader);

    其过程非常简单:

    private IndexSearcher(IndexReader r, boolean closeReader) {

      reader = r;

      //当关闭searcher的时候,是否关闭其reader

      this.closeReader = closeReader;

      //对文档号进行编号

      List subReadersList = new ArrayList();

      gatherSubReaders(subReadersList, reader);

      subReaders = subReadersList.toArray(new IndexReader[subReadersList.size()]);

      docStarts = new int[subReaders.length];

      int maxDoc = 0;

      for (int i = 0; i < subReaders.length; i++) {

        docStarts[i] = maxDoc;

        maxDoc += subReaders[i].maxDoc();

      }

    }

    IndexSearcher表面上看起来好像仅仅是reader的一个封装,它的很多函数都是直接调用reader的相应函数,如:int docFreq(Term term),Document doc(int i),int maxDoc()。然而它提供了两个非常重要的函数:

    因而在某些应用之中,只想得到某个词的倒排表的时候,最好不要用IndexSearcher,而直接用IndexReader.termDocs(Term term),则省去了打分的计算。

    2.3、QueryParser解析查询语句生成查询对象

    代码为:

    QueryParser parser = new QueryParser(Version.LUCENE_CURRENT, "contents", new StandardAnalyzer(Version.LUCENE_CURRENT));

    Query query = parser.parse("+(+apple* -boy) (cat* dog) -(eat~ foods)");

    此过程相对复杂,涉及JavaCC,QueryParser,分词器,查询语法等,本章不会详细论述,会在后面的章节中一一说明。

    此处唯一要说明的是,根据查询语句生成的是一个Query树,这棵树很重要,并且会生成其他的树,一直贯穿整个索引过程。

    query    BooleanQuery  (id=96)    
      |  boost    1.0    
      |  clauses    ArrayList  (id=98)    
      |      elementData    Object[10]  (id=100)    
      |------[0]    BooleanClause  (id=102)    
      |          |   occur    BooleanClause$Occur$1  (id=106)    
      |          |        name    "MUST" //AND   
      |          |        ordinal    0    
      |          |---query    BooleanQuery  (id=108)    
      |                  |   boost    1.0    
      |                  |   clauses    ArrayList  (id=112)    
      |                  |      elementData    Object[10]  (id=113)    
      |                  |------[0]    BooleanClause  (id=114)    
      |                  |          |   occur    BooleanClause$Occur$1  (id=106)    
      |                  |          |      name    "MUST"   //AND  
      |                  |          |      ordinal    0    
      |                  |          |--query    PrefixQuery  (id=116)    
      |                  |                 boost    1.0    
      |                  |                 numberOfTerms    0    
      |                  |                 prefix    Term  (id=117)    
      
    |                  |                     field    "contents"     
      |                  |                     text    "apple"    
      |                  |                 rewriteMethod    MultiTermQuery$1  (id=119)    
      |                  |                     docCountPercent    0.1    
      |                  |                     termCountCutoff    350    
      |                  |------[1]    BooleanClause  (id=115)     
      |                             |   occur    BooleanClause$Occur$3  (id=123)    
      |                             |       name    "MUST_NOT"   //NOT 
      |                             |       ordinal    2    
      |                             |--query    TermQuery  (id=125)    
      |                                    boost    1.0    
      |                                    term    Term  (id=127)    
      |                                        field    "contents"    
      |                                        text    "boy"     
      |                      size    2    
      |                  disableCoord    false    
      |                  minNrShouldMatch    0    
      |------[1]    BooleanClause  (id=104)    
      |          |   occur    BooleanClause$Occur$2  (id=129)    
      |          |        name    "SHOULD"  //OR 
      |          |        ordinal    1    
      |          |---query    BooleanQuery  (id=131)    
      |                  |   boost    1.0    
      |                  |   clauses    ArrayList  (id=133)    
      |                  |      elementData    Object[10]  (id=134)    
      |                  |------[0]    BooleanClause  (id=135)    
      |                  |          |  occur    BooleanClause$Occur$2  (id=129)    
      |                  |          |      name    "SHOULD"  //OR   
      |                  |          |      ordinal    1    
      |                  |          |--query    PrefixQuery  (id=137)    
      |                  |                 boost    1.0    
      |                  |                 numberOfTerms    0    
      |                  |                 prefix    Term  (id=138)    
      |                  |                     field    "contents"    
      |                  |                     text    "cat"    
      |                  |                 rewriteMethod    MultiTermQuery$1  (id=119)    
      |                  |                     docCountPercent    0.1    
      |                  |                     termCountCutoff    350    
      |                  |------[1]    BooleanClause  (id=136)    
      |                             |  occur    BooleanClause$Occur$2  (id=129)    
      |                             |      name    "SHOULD"  //OR    
      |                             |      ordinal    1    
      |                             |--query    TermQuery  (id=140)    
      |                                   boost    1.0    
                                        term    Term  (id=141)    
      
                                          field    "contents"    
      
    |                                       text    "dog"     
      |                      size    2    
      |                  disableCoord    false    
      |                  minNrShouldMatch    0    
      |------[2]    BooleanClause  (id=105)    
                 |   occur    BooleanClause$Occur$3  (id=123)    
                 |       name    "MUST_NOT"   //NOT 
                 |       ordinal    2    
                 |---query    BooleanQuery  (id=143)    
                         |   boost    1.0    
                         |   clauses    ArrayList  (id=146)    
                         |     elementData    Object[10]  (id=147)    
                         |------[0]    BooleanClause  (id=148)    
                         |          |    occur    BooleanClause$Occur$2  (id=129)    
                         |          |       name    "SHOULD"   //OR 
                         |          |       ordinal    1    
                         |          |--query    FuzzyQuery  (id=150)    
                         |                boost    1.0    
                         |                minimumSimilarity    0.5    
                         |                numberOfTerms    0    
                         |                prefixLength    0    
                         |                rewriteMethod MultiTermQuery$ScoringBooleanQueryRewrite  (id=152)    
                         |                term    Term  (id=153)    
                         |                   field    "contents"    
                         |                   text    "eat"    
                         |                termLongEnough    true    
                         |------[1]    BooleanClause  (id=149)     
                                    |    occur    BooleanClause$Occur$2  (id=129)    
                                    |       name    "SHOULD"  //OR  
                                    |       ordinal    1    
                                    |--query    TermQuery  (id=155)    
                                          boost    1.0    
                                          term    Term  (id=156)    
                                              field    "contents"    
                                              text    "foods"
         
                            size    2    
                        disableCoord    false    
                        minNrShouldMatch    0     
            size    3    
        disableCoord    false    
        minNrShouldMatch    0   

    image_thumb4

    对于Query对象有以下说明:

    • BooleanQuery即所有的子语句按照布尔关系合并
      • +也即MUST表示必须满足的语句
      • SHOULD表示可以满足的,minNrShouldMatch表示在SHOULD中必须满足的最小语句个数,默认是0,也即既然是SHOULD,也即或的关系,可以一个也不满足(当然没有MUST的时候除外)。
      • -也即MUST_NOT表示必须不能满足的语句
    • 树的叶子节点中:
      • 最基本的是TermQuery,也即表示一个词
      • 当然也可以是PrefixQuery和FuzzyQuery,这些查询语句由于特殊的语法,可能对应的不是一个词,而是多个词,因而他们都有rewriteMethod对象指向MultiTermQuery的Inner Class,表示对应多个词,在查询过程中会得到特殊处理。

    2.4、搜索查询对象

    代码为:

    TopDocs docs = searcher.search(query, 50);

    其最终调用search(createWeight(query), filter, n);

    索引过程包含以下子过程:

    • 创建weight树,计算term weight
    • 创建scorer及SumScorer树,为合并倒排表做准备
    • 用SumScorer进行倒排表合并
    • 收集文档结果集合及计算打分

    2.4.1、创建Weight对象树,计算Term Weight

    IndexSearcher(Searcher).createWeight(Query) 代码如下:

    protected Weight createWeight(Query query) throws IOException {

      return query.weight(this);

    }

    BooleanQuery(Query).weight(Searcher) 代码为:

    public Weight weight(Searcher searcher) throws IOException {

      //重写Query对象树

      Query query = searcher.rewrite(this);

      //创建Weight对象树

      Weight weight = query.createWeight(searcher);

      //计算Term Weight分数

      float sum = weight.sumOfSquaredWeights();

      float norm = getSimilarity(searcher).queryNorm(sum);

      weight.normalize(norm);

      return weight;

    }

    此过程又包含以下过程:

    • 重写Query对象树
    • 创建Weight对象树
    • 计算Term Weight分数
    2.4.1.1、重写Query对象树

    从BooleanQuery的rewrite函数我们可以看出,重写过程也是一个递归的过程,一直到Query对象树的叶子节点。

    BooleanQuery.rewrite(IndexReader) 代码如下:

    BooleanQuery clone = null;

    for (int i = 0 ; i < clauses.size(); i++) {

      BooleanClause c = clauses.get(i);

      //对每一个子语句的Query对象进行重写

      Query query = c.getQuery().rewrite(reader);

      if (query != c.getQuery()) {

        if (clone == null)

          clone = (BooleanQuery)this.clone();

        //重写后的Query对象加入复制的新Query对象树

        clone.clauses.set(i, new BooleanClause(query, c.getOccur()));

      }

    }

    if (clone != null) {

      return clone; //如果有子语句被重写,则返回复制的新Query对象树。

    } else

      return this; //否则将老的Query对象树返回。

    让我们把目光聚集到叶子节点上,叶子节点基本是两种,或是TermQuery,或是MultiTermQuery,从Lucene的源码可以看出TermQuery的rewrite函数就是返回对象本身,也即真正需要重写的是MultiTermQuery,也即一个Query代表多个Term参与查询,如本例子中的PrefixQuery及FuzzyQuery。

    对此类的Query,Lucene不能够直接进行查询,必须进行重写处理:

    • 首先,要从索引文件的词典中,把多个Term都找出来,比如"appl*",我们在索引文件的词典中可以找到如下Term:"apple","apples","apply",这些Term都要参与查询过程,而非原来的"appl*"参与查询过程,因为词典中根本就没有"appl*"。
    • 然后,将取出的多个Term重新组织成新的Query对象进行查询,基本有两种方式:
      • 方式一:将多个Term看成一个Term,将包含它们的文档号取出来放在一起(DocId Set),作为一个统一的倒排表来参与倒排表的合并。
      • 方式二:将多个Term组成一个BooleanQuery,它们之间是OR的关系。

    从上面的Query对象树中,我们可以看到,MultiTermQuery都有一个RewriteMethod成员变量,就是用来重写Query对象的,有以下几种:

    • ConstantScoreFilterRewrite采取的是方式一,其rewrite函数实现如下:

    public Query rewrite(IndexReader reader, MultiTermQuery query) {

      Query result = new ConstantScoreQuery(new MultiTermQueryWrapperFilter(query));

      result.setBoost(query.getBoost());

      return result;

    }

    MultiTermQueryWrapperFilter中的getDocIdSet函数实现如下:

    public DocIdSet getDocIdSet(IndexReader reader) throws IOException {

      //得到MultiTermQuery的Term枚举器

      final TermEnum enumerator = query.getEnum(reader);

      try {

        if (enumerator.term() == null)

          return DocIdSet.EMPTY_DOCIDSET;

        //创建包含多个Term的文档号集合

        final OpenBitSet bitSet = new OpenBitSet(reader.maxDoc());

        final int[] docs = new int[32];

        final int[] freqs = new int[32];

        TermDocs termDocs = reader.termDocs();

        try {

          int termCount = 0;

          //一个循环,取出对应MultiTermQuery的所有的Term,取出他们的文档号,加入集合

          do {

            Term term = enumerator.term();

            if (term == null)

              break;

            termCount++;

            termDocs.seek(term);

            while (true) {

              final int count = termDocs.read(docs, freqs);

              if (count != 0) {

                for(int i=0;i

                  bitSet.set(docs[i]);

                }

              } else {

                break;

              }

            }

          } while (enumerator.next());

          query.incTotalNumberOfTerms(termCount);

        } finally {

          termDocs.close();

        }

        return bitSet;

      } finally {

        enumerator.close();

      }

    }

    • ScoringBooleanQueryRewrite及其子类ConstantScoreBooleanQueryRewrite采取方式二,其rewrite函数代码如下:

    public Query rewrite(IndexReader reader, MultiTermQuery query) throws IOException {

      //得到MultiTermQuery的Term枚举器

      FilteredTermEnum enumerator = query.getEnum(reader);

      BooleanQuery result = new BooleanQuery(true);

      int count = 0;

      try {

          //一个循环,取出对应MultiTermQuery的所有的Term,加入BooleanQuery

        do {

          Term t = enumerator.term();

          if (t != null) {

            TermQuery tq = new TermQuery(t);

            tq.setBoost(query.getBoost() * enumerator.difference());

            result.add(tq, BooleanClause.Occur.SHOULD);

            count++;

          }

        } while (enumerator.next());   

      } finally {

        enumerator.close();

      }

      query.incTotalNumberOfTerms(count);

      return result;

    }

    • 以上两种方式各有优劣:
      • 方式一使得MultiTermQuery对应的所有的Term看成一个Term,组成一个docid set,作为统一的倒排表参与倒排表的合并,这样无论这样的Term在索引中有多少,都只会有一个倒排表参与合并,不会产生TooManyClauses异常,也使得性能得到提高。但是多个Term之间的tf, idf等差别将被忽略,所以采用方式二的RewriteMethod为ConstantScoreXXX,也即除了用户指定的Query boost,其他的打分计算全部忽略。
      • 方式二使得整个Query对象树被展开,叶子节点都为TermQuery,MultiTermQuery中的多个Term可根据在索引中的tf, idf等参与打分计算,然而我们事先并不知道索引中和MultiTermQuery相对应的Term到底有多少个,因而会出现TooManyClauses异常,也即一个BooleanQuery中的子查询太多。这样会造成要合并的倒排表非常多,从而影响性能。
      • Lucene认为对于MultiTermQuery这种查询,打分计算忽略是很合理的,因为当用户输入"appl*"的时候,他并不知道索引中有什么与此相关,也并不偏爱其中之一,因而计算这些词之间的差别对用户来讲是没有意义的。从而Lucene对方式二也提供了ConstantScoreXXX,来提高搜索过程的性能,从后面的例子来看,会影响文档打分,在实际的系统应用中,还是存在问题的。
      • 为了兼顾上述两种方式,Lucene提供了ConstantScoreAutoRewrite,来根据不同的情况,选择不同的方式。

    ConstantScoreAutoRewrite.rewrite代码如下:

    public Query rewrite(IndexReader reader, MultiTermQuery query) throws IOException {

      final Collection pendingTerms = new ArrayList();

      //计算文档数目限制,docCountPercent默认为0.1,也即索引文档总数的0.1%

      final int docCountCutoff = (int) ((docCountPercent / 100.) * reader.maxDoc());

      //计算Term数目限制,默认为350

      final int termCountLimit = Math.min(BooleanQuery.getMaxClauseCount(), termCountCutoff);

      int docVisitCount = 0;

      FilteredTermEnum enumerator = query.getEnum(reader);

      try {

        //一个循环,取出与MultiTermQuery相关的所有的Term。

        while(true) {

          Term t = enumerator.term();

          if (t != null) {

            pendingTerms.add(t);

            docVisitCount += reader.docFreq(t);

          }

          //如果Term数目超限,或者文档数目超限,则可能非常影响倒排表合并的性能,因而选用方式一,也即ConstantScoreFilterRewrite的方式

          if (pendingTerms.size() >= termCountLimit || docVisitCount >= docCountCutoff) {

            Query result = new ConstantScoreQuery(new MultiTermQueryWrapperFilter(query));

            result.setBoost(query.getBoost());

            return result;

          } else  if (!enumerator.next()) {

            //如果Term数目不太多,而且文档数目也不太多,不会影响倒排表合并的性能,因而选用方式二,也即ConstantScoreBooleanQueryRewrite的方式。

            BooleanQuery bq = new BooleanQuery(true);

            for (final Term term: pendingTerms) {

              TermQuery tq = new TermQuery(term);

              bq.add(tq, BooleanClause.Occur.SHOULD);

            }

            Query result = new ConstantScoreQuery(new QueryWrapperFilter(bq));

            result.setBoost(query.getBoost());

            query.incTotalNumberOfTerms(pendingTerms.size());

            return result;

          }

        }

      } finally {

        enumerator.close();

      }

    }

    从上面的叙述中,我们知道,在重写Query对象树的时候,从MultiTermQuery得到的TermEnum很重要,能够得到对应MultiTermQuery的所有的Term,这是怎么做的的呢?

    MultiTermQuery的getEnum返回的是FilteredTermEnum,它有两个成员变量,其中TermEnum actualEnum是用来枚举索引中所有的Term的,而Term currentTerm指向的是当前满足条件的Term,FilteredTermEnum的next()函数如下:

    public boolean next() throws IOException {

        if (actualEnum == null) return false;

        currentTerm = null;

        //不断得到下一个索引中的Term

        while (currentTerm == null) {

            if (endEnum()) return false;

            if (actualEnum.next()) {

                Term term = actualEnum.term();

                 //如果当前索引中的Term满足条件,则赋值为当前的Term

                if (termCompare(term)) {

                    currentTerm = term;

                    return true;

                }

            }

            else return false;

        }

        currentTerm = null;

        return false;

    }

    不同的MultiTermQuery的termCompare不同:

    • 对于PrefixQuery的getEnum(IndexReader reader)得到的是PrefixTermEnum,其termCompare实现如下:

    protected boolean termCompare(Term term) {

      //只要前缀相同,就满足条件

      if (term.field() == prefix.field() && term.text().startsWith(prefix.text())){                                                                             

        return true;

      }

      endEnum = true;

      return false;

    }

    • 对于FuzzyQuery的getEnum得到的是FuzzyTermEnum,其termCompare实现如下:

    protected final boolean termCompare(Term term) {

      //对于FuzzyQuery,其prefix设为空"",也即这一条件一定满足,只要计算的是similarity

      if (field == term.field() && term.text().startsWith(prefix)) {

          final String target = term.text().substring(prefix.length());

          this.similarity = similarity(target);

          return (similarity > minimumSimilarity);

      }

      endEnum = true;

      return false;

    }

    //计算Levenshtein distance 也即 edit distance,对于两个字符串,从一个转换成为另一个所需要的最少基本操作(添加,删除,替换)数。

    private synchronized final float similarity(final String target) {

        final int m = target.length();

        final int n = text.length();

        // init matrix d

        for (int i = 0; i<=n; ++i) {

          p[i] = i;

        }

        // start computing edit distance

        for (int j = 1; j<=m; ++j) { // iterates through target

          int bestPossibleEditDistance = m;

          final char t_j = target.charAt(j-1); // jth character of t

          d[0] = j;

          for (int i=1; i<=n; ++i) { // iterates through text

            // minimum of cell to the left+1, to the top+1, diagonally left and up +(0|1)

            if (t_j != text.charAt(i-1)) {

              d[i] = Math.min(Math.min(d[i-1], p[i]),  p[i-1]) + 1;

            } else {

              d[i] = Math.min(Math.min(d[i-1]+1, p[i]+1),  p[i-1]);

            }

            bestPossibleEditDistance = Math.min(bestPossibleEditDistance, d[i]);

          }

          // copy current distance counts to 'previous row' distance counts: swap p and d

          int _d[] = p;

          p = d;

          d = _d;

        }

        return 1.0f - ((float)p[n] / (float) (Math.min(n, m)));

      }

    有关edit distance的算法详见http://www.merriampark.com/ld.htm

    计算两个字符串s和t的edit distance算法如下:

    Step 1: 
    Set n to be the length of s. 
    Set m to be the length of t. 
    If n = 0, return m and exit. 
    If m = 0, return n and exit. 
    Construct a matrix containing 0..m rows and 0..n columns.

    Step 2: 
    Initialize the first row to 0..n. 
    Initialize the first column to 0..m.

    Step 3: 
    Examine each character of s (i from 1 to n).

    Step 4: 
    Examine each character of t (j from 1 to m).

    Step 5: 
    If s[i] equals t[j], the cost is 0. 
    If s[i] doesn't equal t[j], the cost is 1.

    Step 6: 
    Set cell d[i,j] of the matrix equal to the minimum of: 
    a. The cell immediately above plus 1: d[i-1,j] + 1. 
    b. The cell immediately to the left plus 1: d[i,j-1] + 1. 
    c. The cell diagonally above and to the left plus the cost: d[i-1,j-1] + cost.

    Step 7: 
    After the iteration steps (3, 4, 5, 6) are complete, the distance is found in cell d[n,m].

    举例说明其过程如下:

    比较的两个字符串为:“GUMBO” 和 "GAMBOL".

    editdistance_thumb8

    下面做一个试验,来说明ConstantScoreXXX对评分的影响:

    在索引中,添加了以下四篇文档:

    file01.txt : apple other other other other

    file02.txt : apple apple other other other

    file03.txt : apple apple apple other other

    file04.txt : apple apple apple other other

    搜索"apple"结果如下:

    docid : 3 score : 0.67974937 
    docid : 2 score : 0.58868027 
    docid : 1 score : 0.4806554 
    docid : 0 score : 0.33987468

    文档按照包含"apple"的多少排序。

    而搜索"apple*"结果如下:

    docid : 0 score : 1.0 
    docid : 1 score : 1.0 
    docid : 2 score : 1.0 
    docid : 3 score : 1.0

    也即Lucene放弃了对score的计算。

    经过rewrite,得到的新Query对象树如下:

    query    BooleanQuery  (id=89)    
       |  boost    1.0    
       |  clauses    ArrayList  (id=90)    
       |     elementData    Object[3]  (id=97)    
       |------[0]    BooleanClause  (id=99)    
       |          |   occur    BooleanClause$Occur$1  (id=103)    
       |          |       name    "MUST"    
       |          |       ordinal    0    
       |          |---query    BooleanQuery  (id=105)    
       |                  |  boost    1.0    
       |                  |  clauses    ArrayList  (id=115)    
       |                  |    elementData    Object[2]  (id=120)   

       |                  |       //"apple*"被用方式一重写为ConstantScoreQuery 
       |                  |---[0]    BooleanClause  (id=121)    
       |                  |      |     occur    BooleanClause$Occur$1  (id=103)    
       |                  |      |         name    "MUST"    
       |                  |      |         ordinal    0    
       |                  |      |---query    ConstantScoreQuery  (id=123)    
       |                  |               boost    1.0    
       |                  |               filter    MultiTermQueryWrapperFilter  (id=125)    
       |                  |                   query    PrefixQuery  (id=48)    
       |                  |                       boost    1.0    
       |                  |                       numberOfTerms    0    
       |                  |                       prefix    Term  (id=127)    
       |                  |                           field    "contents"    
       |                  |                           text    "apple"    
       |                  |                       rewriteMethod    MultiTermQuery$1  (id=50)     
       |                  |---[1]    BooleanClause  (id=122)    
       |                         |    occur    BooleanClause$Occur$3  (id=111)    
       |                         |        name    "MUST_NOT"    
       |                         |        ordinal    2    
       |                         |---query    TermQuery  (id=124)    
       |                                  boost    1.0    
       |                                  term    Term  (id=130)    
       |                                      field    "contents"    
       |                                      text    "boy"    
       |                     modCount    0    
       |                     size    2    
       |                 disableCoord    false    
       |                 minNrShouldMatch    0    
       |------[1]    BooleanClause  (id=101)    
       |          |   occur    BooleanClause$Occur$2  (id=108)    
       |          |       name    "SHOULD"    
       |          |       ordinal    1    
       |          |---query    BooleanQuery  (id=110)    
       |                  |  boost    1.0    
       |                  |  clauses    ArrayList  (id=117)    
       |                  |    elementData    Object[2]  (id=132)    

       |                  |       //"cat*"被用方式一重写为ConstantScoreQuery 
       |                  |------[0]    BooleanClause  (id=133)    
       |                  |          |   occur    BooleanClause$Occur$2  (id=108)    
       |                  |          |       name    "SHOULD"    
       |                  |          |       ordinal    1    
       |                  |          |---query    ConstantScoreQuery  (id=135)    
       |                  |                   boost    1.0    
       |                  |                   filter    MultiTermQueryWrapperFilter  (id=137)    
       |                  |                     query    PrefixQuery  (id=63)    
       |                  |                        boost    1.0    
       |                  |                        numberOfTerms    0    
       |                  |                        prefix    Term  (id=138)    
       |                  |                            field    "contents"    
       |                  |                            text    "cat"    
       |                  |                       rewriteMethod    MultiTermQuery$1  (id=50)    
       |                  |------[1]    BooleanClause  (id=134)    
       |                             |   occur    BooleanClause$Occur$2  (id=108)    
       |                             |        name    "SHOULD"    
       |                             |        ordinal    1    
       |                             |---query    TermQuery  (id=136)    
       |                                      boost    1.0    
       |                                      term    Term  (id=140)    
       
                                             field    "contents"    
       
    |                                          text    "dog"    
       |                     modCount    0    
       |                     size    2    
       |                 disableCoord    false    
       |                 minNrShouldMatch    0    
       |------[2]    BooleanClause  (id=102)    
                  |    occur    BooleanClause$Occur$3  (id=111)    
                  |        name    "MUST_NOT"    
                  |        ordinal    2    
                  |---query    BooleanQuery  (id=113)    
                          |  boost    1.0    
                          |  clauses    ArrayList  (id=119)    
                          |     elementData    Object[2]  (id=142)    
                          |------[0]    BooleanClause  (id=143)    
                          |          |   occur    BooleanClause$Occur$2  (id=108)    
                          |          |       name    "SHOULD"    
                          |          |       ordinal    1    

                          |          |    //"eat~"作为FuzzyQuery,被重写成BooleanQuery, 
                          |          |     索引中满足 条件的Term有"eat"和"cat"。FuzzyQuery 
                          |          |     不用上述的任何一种RewriteMethod,而是用方式二自己 
                          |          |     实现了rewrite函数,是将同"eat"的edit distance最近的 
                          |          |     最多maxClauseCount(默认1024)个Term组成BooleanQuery。 
                          |          |---query    BooleanQuery  (id=145)    
                          |                   |  boost    1.0    
                          |                   |  clauses    ArrayList  (id=146)    
                          |                   |     elementData    Object[10]  (id=147)    
                          |                   |------[0]    BooleanClause  (id=148)    
                          |                   |          |    occur    BooleanClause$Occur$2  (id=108)    
                          |                   |          |       name    "SHOULD"    
                          |                   |          |       ordinal    1    
                          |                   |          |---query    TermQuery  (id=150)    
                          |                   |                  boost    1.0    
                          |                   |                  term    Term  (id=152)    
                          |                   |                      field    "contents"    
                          |                   |                      text    "eat"    
                          |                   |------[1]    BooleanClause  (id=149)    
                          |                              |    occur    BooleanClause$Occur$2  (id=108)    
                          |                              |       name    "SHOULD"    
                          |                              |       ordinal    1    
                          |                              |---query    TermQuery  (id=151)    
                          |                                       boost    0.33333325    
                          |                                       term    Term  (id=153)    
                          |                                           field    "contents"    
                          |                                           text    "cat"        
                          |                  modCount    2    
                          |                  size    2    
                          |              disableCoord    true    
                          |              minNrShouldMatch    0    
                          |------[1]    BooleanClause  (id=144)    
                                      |   occur    BooleanClause$Occur$2  (id=108)    
                                      |       name    "SHOULD"    
                                      |       ordinal    1    
                                      |---query    TermQuery  (id=154)    
                                              boost    1.0    
                                              term    Term  (id=155)    
                                                 field    "contents"    
                                                 text    "foods" 
       
                            modCount    0    
                            size    2    
                        disableCoord    false    
                        minNrShouldMatch    0    
            modCount    0    
            size    3    
        disableCoord    false    
        minNrShouldMatch    0   

    image_thumb6

    2.4、搜索查询对象

    2.4.1.2、创建Weight对象树

    BooleanQuery.createWeight(Searcher) 最终返回return new BooleanWeight(searcher),BooleanWeight构造函数的具体实现如下:

    public BooleanWeight(Searcher searcher) {

      this.similarity = getSimilarity(searcher);

      weights = new ArrayList(clauses.size());

      //也是一个递归的过程,沿着新的Query对象树一直到叶子节点

      for (int i = 0 ; i < clauses.size(); i++) {

        weights.add(clauses.get(i).getQuery().createWeight(searcher));

      }

    }

    对于TermQuery的叶子节点,其TermQuery.createWeight(Searcher) 返回return new TermWeight(searcher)对象,TermWeight构造函数如下:

    public TermWeight(Searcher searcher) {

      this.similarity = getSimilarity(searcher);

      //此处计算了idf

      idfExp = similarity.idfExplain(term, searcher);

      idf = idfExp.getIdf();

    }

    //idf的计算完全符合文档中的公式:

    image

    public IDFExplanation idfExplain(final Term term, final Searcher searcher) {

      final int df = searcher.docFreq(term);

      final int max = searcher.maxDoc();

      final float idf = idf(df, max);

      return new IDFExplanation() {

          public float getIdf() {

            return idf;

          }};

    }

    public float idf(int docFreq, int numDocs) {

      return (float)(Math.log(numDocs/(double)(docFreq+1)) + 1.0);

    }

    而ConstantScoreQuery.createWeight(Searcher) 除了创建ConstantScoreQuery.ConstantWeight(searcher)对象外,没有计算idf。

    由此创建的Weight对象树如下:

    weight    BooleanQuery$BooleanWeight  (id=169)    
       |   similarity    DefaultSimilarity  (id=177)    
       |   this$0    BooleanQuery  (id=89)    
       |   weights    ArrayList  (id=188)    
       |      elementData    Object[3]  (id=190)    
       |------[0]    BooleanQuery$BooleanWeight  (id=171)    
       |          |   similarity    DefaultSimilarity  (id=177)    
       |          |   this$0    BooleanQuery  (id=105)    
       |          |   weights    ArrayList  (id=193)    
       |          |      elementData    Object[2]  (id=199)    
       |          |------[0]    ConstantScoreQuery$ConstantWeight  (id=183)    
       |          |               queryNorm    0.0    
       |          |               queryWeight    0.0    
       |          |               similarity    DefaultSimilarity  (id=177)   

       |          |               //ConstantScore(contents:apple*)   
       |          |               this$0    ConstantScoreQuery  (id=123)    
       |          |------[1]    TermQuery$TermWeight  (id=175)    
       |                         idf    2.0986123    
       |                         idfExp    Similarity$1  (id=241)    
       |                         queryNorm    0.0    
       |                         queryWeight    0.0    
       |                         similarity    DefaultSimilarity  (id=177)   

       |                         //contents:boy 
       |                        this$0    TermQuery  (id=124)    
       |                         value    0.0    
       |                 modCount    2    
       |                 size    2    
       |------[1]    BooleanQuery$BooleanWeight  (id=179)    
       |          |   similarity    DefaultSimilarity  (id=177)    
       |          |   this$0    BooleanQuery  (id=110)    
       |          |   weights    ArrayList  (id=195)    
       |          |      elementData    Object[2]  (id=204)    
       |          |------[0]    ConstantScoreQuery$ConstantWeight  (id=206)    
       |          |               queryNorm    0.0    
       |          |               queryWeight    0.0    
       |          |               similarity    DefaultSimilarity  (id=177)   

       |          |               //ConstantScore(contents:cat*) 
       |          |               this$0    ConstantScoreQuery  (id=135)    
       |          |------[1]    TermQuery$TermWeight  (id=207)    
       |                         idf    1.5389965    
       |                         idfExp    Similarity$1  (id=210)    
       |                         queryNorm    0.0    
       |                         queryWeight    0.0    
       |                         similarity    DefaultSimilarity  (id=177)

       |                         //contents:dog 
       |                         this$0    TermQuery  (id=136)    
       |                         value    0.0    
       |                 modCount    2    
       |                 size    2    
       |------[2]    BooleanQuery$BooleanWeight  (id=182)    
                  |  similarity    DefaultSimilarity  (id=177)    
                  |  this$0    BooleanQuery  (id=113)    
                  |  weights    ArrayList  (id=197)    
                  |     elementData    Object[2]  (id=216)    
                  |------[0]    BooleanQuery$BooleanWeight  (id=181)    
                  |          |    similarity    BooleanQuery$1  (id=220)    
                  |          |    this$0    BooleanQuery  (id=145)    
                  |          |    weights    ArrayList  (id=221)    
                  |          |      elementData    Object[2]  (id=224)    
                  |          |------[0]    TermQuery$TermWeight  (id=226)    
                  |          |                idf    2.0986123    
                  |          |                idfExp    Similarity$1  (id=229)    
                  |          |                queryNorm    0.0    
                  |          |                queryWeight    0.0    
                  |          |                similarity    DefaultSimilarity  (id=177)   

                  |          |                //contents:eat 
                  |          |                this$0    TermQuery  (id=150)    
                  |          |                value    0.0    
                  |          |------[1]    TermQuery$TermWeight  (id=227)    
                  |                          idf    1.1823215    
                  |                          idfExp    Similarity$1  (id=231)    
                  |                          queryNorm    0.0    
                  |                          queryWeight    0.0    
                  |                          similarity    DefaultSimilarity  (id=177)   

                  |                          //contents:cat^0.33333325 
                  |                          this$0    TermQuery  (id=151)    
                  |                          value    0.0    
                  |                  modCount    2    
                  |                  size    2    
                  |------[1]    TermQuery$TermWeight  (id=218)    
                                idf    2.0986123    
                                idfExp    Similarity$1  (id=233)    
                                queryNorm    0.0    
                                queryWeight    0.0    
                                similarity    DefaultSimilarity  (id=177)   

                                //contents:foods 
                                this$0    TermQuery
      (id=154)    
                                value    0.0    
                        modCount    2    
                        size    2    
            modCount    3    
            size    3   

    image

    2.4.1.3、计算Term Weight分数

    (1) 首先计算sumOfSquaredWeights

    按照公式:

    image

    代码如下:

    float sum = weight.sumOfSquaredWeights();

    //可以看出,也是一个递归的过程

    public float sumOfSquaredWeights() throws IOException {

      float sum = 0.0f;

      for (int i = 0 ; i < weights.size(); i++) {

        float s = weights.get(i).sumOfSquaredWeights();

        if (!clauses.get(i).isProhibited())

          sum += s;

      }

      sum *= getBoost() * getBoost();  //乘以query boost

      return sum ;

    }

    对于叶子节点TermWeight来讲,其TermQuery$TermWeight.sumOfSquaredWeights()实现如下:

    public float sumOfSquaredWeights() {

      //计算一部分打分,idf*t.getBoost(),将来还会用到。

      queryWeight = idf * getBoost();

      //计算(idf*t.getBoost())^2

      return queryWeight * queryWeight;

    }

    对于叶子节点ConstantWeight来讲,其ConstantScoreQuery$ConstantWeight.sumOfSquaredWeights() 如下:

    public float sumOfSquaredWeights() {

      //除了用户指定的boost以外,其他都不计算在打分内

      queryWeight = getBoost();

      return queryWeight * queryWeight;

    }

    (2) 计算queryNorm

    其公式如下:

    image

    其代码如下:

    public float queryNorm(float sumOfSquaredWeights) {

      return (float)(1.0 / Math.sqrt(sumOfSquaredWeights));

    }

    (3) 将queryNorm算入打分

    代码为:

    weight.normalize(norm);

    //又是一个递归的过程

    public void normalize(float norm) {

      norm *= getBoost();

      for (Weight w : weights) {

        w.normalize(norm);

      }

    }

    其叶子节点TermWeight来讲,其TermQuery$TermWeight.normalize(float) 代码如下:

    public void normalize(float queryNorm) {

      this.queryNorm = queryNorm;

      //原来queryWeight为idf*t.getBoost(),现在为queryNorm*idf*t.getBoost()。

      queryWeight *= queryNorm;

      //打分到此计算了queryNorm*idf*t.getBoost()*idf = queryNorm*idf^2*t.getBoost()部分。

      value = queryWeight * idf;

    }

    我们知道,Lucene的打分公式整体如下,到此计算了图中,红色的部分:

    image 

    2.4.2、创建Scorer及SumScorer对象树

    当创建完Weight对象树的时候,调用IndexSearcher.search(Weight, Filter, int),代码如下:

    //(a)创建文档号收集器

    TopScoreDocCollector collector = TopScoreDocCollector.create(nDocs, !weight.scoresDocsOutOfOrder());

    search(weight, filter, collector);

    //(b)返回搜索结果

    return collector.topDocs();

    public void search(Weight weight, Filter filter, Collector collector)

        throws IOException {

      if (filter == null) {

        for (int i = 0; i < subReaders.length; i++) {

          collector.setNextReader(subReaders[i], docStarts[i]);

          //(c)创建Scorer对象树,以及SumScorer树用来合并倒排表

          Scorer scorer = weight.scorer(subReaders[i], !collector.acceptsDocsOutOfOrder(), true);

          if (scorer != null) {

            //(d)合并倒排表,(e)收集文档号

            scorer.score(collector);

          }

        }

      } else {

        for (int i = 0; i < subReaders.length; i++) {

          collector.setNextReader(subReaders[i], docStarts[i]);

          searchWithFilter(subReaders[i], weight, filter, collector);

        }

      }

    }

    在本节中,重点分析(c)创建Scorer对象树,以及SumScorer树用来合并倒排表,在2.4.3节中,分析 (d)合并倒排表,在2.4.4节中,分析文档结果收集器的创建(a),结果文档的收集(e),以及文档的返回(b)

    BooleanQuery$BooleanWeight.scorer(IndexReader, boolean, boolean) 代码如下:

    public Scorer scorer(IndexReader reader, boolean scoreDocsInOrder, boolean topScorer){

      //存放对应于MUST语句的Scorer

      List required = new ArrayList();

      //存放对应于MUST_NOT语句的Scorer

      List prohibited = new ArrayList();

      //存放对应于SHOULD语句的Scorer

      List optional = new ArrayList();

      //遍历每一个子语句,生成子Scorer对象,并加入相应的集合,这是一个递归的过程。

      Iterator cIter = clauses.iterator();

      for (Weight w  : weights) {

        BooleanClause c =  cIter.next();

        Scorer subScorer = w.scorer(reader, true, false);

        if (subScorer == null) {

          if (c.isRequired()) {

            return null;

          }

        } else if (c.isRequired()) {

          required.add(subScorer);

        } else if (c.isProhibited()) {

          prohibited.add(subScorer);

        } else {

          optional.add(subScorer);

        }

      }

      //此处在有关BooleanScorer及scoreDocsInOrder一节会详细描述

      if (!scoreDocsInOrder && topScorer && required.size() == 0 && prohibited.size() < 32) { 
         return new BooleanScorer(similarity, minNrShouldMatch, optional, prohibited); 
      }

      //生成Scorer对象树,同时生成SumScorer对象树

      return new BooleanScorer2(similarity, minNrShouldMatch, required, prohibited, optional);

    }

    对其叶子节点TermWeight来说,TermQuery$TermWeight.scorer(IndexReader, boolean, boolean) 代码如下:

    public Scorer scorer(IndexReader reader, boolean scoreDocsInOrder, boolean topScorer) throws IOException {

      //此Term的倒排表

      TermDocs termDocs = reader.termDocs(term);

      if (termDocs == null)

        return null;

      return new TermScorer(this, termDocs, similarity, reader.norms(term.field()));

    }

    TermScorer(Weight weight, TermDocs td, Similarity similarity, byte[] norms) {

      super(similarity);

      this.weight = weight;

      this.termDocs = td;

      //得到标准化因子

      this.norms = norms;

      //得到原来计算得的打分:queryNorm*idf^2*t.getBoost()

      this.weightValue = weight.getValue();

      for (int i = 0; i < SCORE_CACHE_SIZE; i++)

        scoreCache[i] = getSimilarity().tf(i) * weightValue;

    }

    对其叶子节点ConstantWeight来说,ConstantScoreQuery$ConstantWeight.scorer(IndexReader, boolean, boolean) 代码如下:

    public ConstantScorer(Similarity similarity, IndexReader reader, Weight w) {

      super(similarity);

      theScore = w.getValue();

      //得到所有的文档号,形成统一的倒排表,参与倒排表合并。

      DocIdSet docIdSet = filter.getDocIdSet(reader);

      DocIdSetIterator docIdSetIterator = docIdSet.iterator();

    }

    对于BooleanWeight,最后要产生的是BooleanScorer2,其构造函数代码如下:

    public BooleanScorer2(Similarity similarity, int minNrShouldMatch,

        List required, List prohibited, List optional) {

      super(similarity);

      //为了计算打分公式中的coord项做统计

      coordinator = new Coordinator();

      this.minNrShouldMatch = minNrShouldMatch;

      //SHOULD的部分 

      optionalScorers = optional;

      coordinator.maxCoord += optional.size();

      //MUST的部分 

      requiredScorers = required;

      coordinator.maxCoord += required.size();

      //MUST_NOT的部分

      prohibitedScorers = prohibited;

      //事先计算好各种情况的coord值

      coordinator.init();

      //创建SumScorer为倒排表合并做准备

      countingSumScorer = makeCountingSumScorer();

    }

    Coordinator.init() {

      coordFactors = new float[maxCoord + 1];

      Similarity sim = getSimilarity();

      for (int i = 0; i <= maxCoord; i++) {

        //计算总的子语句的个数和一个文档满足的子语句的个数之间的关系,自然是一篇文档满足的子语句个个数越多,打分越高。

        coordFactors[i] = sim.coord(i, maxCoord);

      }

    }

    在生成Scorer对象树之外,还会生成SumScorer对象树,来表示各个语句之间的关系,为合并倒排表做准备。

    在解析BooleanScorer2.makeCountingSumScorer() 之前,我们先来看不同的语句之间都存在什么样的关系,又将如何影响倒排表合并呢?

    语句主要分三类:MUST,SHOULD,MUST_NOT

    语句之间的组合主要有以下几种情况:

    • 多个MUST,如"(+apple +boy +dog)",则会生成ConjunctionScorer(Conjunction 交集),也即倒排表取交集
    • MUST和SHOULD,如"(+apple boy)",则会生成ReqOptSumScorer(required optional),也即MUST的倒排表返回,如果文档包括SHOULD的部分,则增加打分。
    • MUST和MUST_NOT,如"(+apple –boy)",则会生成ReqExclScorer(required exclusive),也即返回MUST的倒排表,但扣除MUST_NOT的倒排表中的文档。
    • 多个SHOULD,如"(apple boy dog)",则会生成DisjunctionSumScorer(Disjunction 并集),也即倒排表去并集
    • SHOULD和MUST_NOT,如"(apple –boy)",则SHOULD被认为成MUST,会生成ReqExclScorer
    • MUST,SHOULD,MUST_NOT同时出现,则MUST首先和MUST_NOT组合成ReqExclScorer,SHOULD单独成为SingleMatchScorer,然后两者组合成ReqOptSumScorer。

    下面分析生成SumScorer的过程:

    BooleanScorer2.makeCountingSumScorer() 分两种情况:

    • 当有MUST的语句的时候,则调用makeCountingSumScorerSomeReq()
    • 当没有MUST的语句的时候,则调用makeCountingSumScorerNoReq()

    首先来看makeCountingSumScorerSomeReq代码如下:

    private Scorer makeCountingSumScorerSomeReq() {

      if (optionalScorers.size() == minNrShouldMatch) {

        //如果optional的语句个数恰好等于最少需满足的optional的个数,则所有的optional都变成required。于是首先所有的optional生成ConjunctionScorer(交集),然后再通过addProhibitedScorers将prohibited加入,生成ReqExclScorer(required exclusive)

        ArrayList allReq = new ArrayList(requiredScorers);

        allReq.addAll(optionalScorers);

        return addProhibitedScorers(countingConjunctionSumScorer(allReq));

      } else {

        //首先所有的required的语句生成ConjunctionScorer(交集)

        Scorer requiredCountingSumScorer =

              requiredScorers.size() == 1

              ? new SingleMatchScorer(requiredScorers.get(0))

              : countingConjunctionSumScorer(requiredScorers);

        if (minNrShouldMatch > 0) {

         //如果最少需满足的optional的个数有一定的限制,则意味着optional中有一部分要相当于required,会影响倒排表的合并。因而required生成的ConjunctionScorer(交集)和optional生成的DisjunctionSumScorer(并集)共同组合成一个ConjunctionScorer(交集),然后再加入prohibited,生成ReqExclScorer

          return addProhibitedScorers(

                        dualConjunctionSumScorer(

                                requiredCountingSumScorer,

                                countingDisjunctionSumScorer(

                                        optionalScorers,

                                        minNrShouldMatch)));

        } else { // minNrShouldMatch == 0

          //如果最少需满足的optional的个数没有一定的限制,则optional并不影响倒排表的合并,仅仅在文档包含optional部分的时候增加打分。所以required和prohibited首先生成ReqExclScorer,然后再加入optional,生成ReqOptSumScorer(required optional)

          return new ReqOptSumScorer(

                        addProhibitedScorers(requiredCountingSumScorer),

                        optionalScorers.size() == 1

                          ? new SingleMatchScorer(optionalScorers.get(0))

                          : countingDisjunctionSumScorer(optionalScorers, 1));

        }

      }

    }

    然后我们来看makeCountingSumScorerNoReq代码如下:

    private Scorer makeCountingSumScorerNoReq() {

      // minNrShouldMatch optional scorers are required, but at least 1

      int nrOptRequired = (minNrShouldMatch < 1) ? 1 : minNrShouldMatch;

      Scorer requiredCountingSumScorer;

      if (optionalScorers.size() > nrOptRequired)

        //如果optional的语句个数多于最少需满足的optional的个数,则optional中一部分相当required,影响倒排表的合并,所以生成DisjunctionSumScorer

        requiredCountingSumScorer = countingDisjunctionSumScorer(optionalScorers, nrOptRequired);

      else if (optionalScorers.size() == 1)

        //如果optional的语句只有一个,则返回SingleMatchScorer,不存在倒排表合并的问题。

        requiredCountingSumScorer = new SingleMatchScorer(optionalScorers.get(0));

      else

        //如果optional的语句个数少于等于最少需满足的optional的个数,则所有的optional都算required,所以生成ConjunctionScorer

        requiredCountingSumScorer = countingConjunctionSumScorer(optionalScorers);

      //将prohibited加入,生成ReqExclScorer

      return addProhibitedScorers(requiredCountingSumScorer);

    }

    经过此步骤,生成的Scorer对象树如下:

    scorer    BooleanScorer2  (id=50)    
       |   coordinator    BooleanScorer2$Coordinator  (id=53)    
       |   countingSumScorer    ReqOptSumScorer  (id=54)     
       |   minNrShouldMatch    0    
       |---optionalScorers    ArrayList  (id=55)    
       |       |  elementData    Object[10]  (id=69)    
       |       |---[0]    BooleanScorer2  (id=73)    
       |              |  coordinator    BooleanScorer2$Coordinator  (id=74)    
       |              |  countingSumScorer    BooleanScorer2$1  (id=75)     
       |              |  minNrShouldMatch    0    
       |              |---optionalScorers    ArrayList  (id=76)    
       |              |       |  elementData    Object[10]  (id=83)    
       |              |       |---[0]    ConstantScoreQuery$ConstantScorer  (id=86)     
       |              |       |       docIdSetIterator    OpenBitSetIterator  (id=88)    
       |              |       |       similarity    DefaultSimilarity  (id=64)    
       |              |       |       theScore    0.47844642   

       |              |       |       //ConstantScore(contents:cat*) 
       |              |       |       this$0    ConstantScoreQuery  (id=90)    
       |              |       |---[1]    TermScorer  (id=87)    
       |              |              doc    -1    
       |              |              doc    0    
       |              |              docs    int[32]  (id=93)    
       |              |              freqs    int[32]  (id=95)    
       |              |              norms    byte[4]  (id=96)    
       |              |              pointer    0    
       |              |              pointerMax    2    
       |              |              scoreCache    float[32]  (id=98)    
       |              |              similarity    DefaultSimilarity  (id=64)    
       |              |              termDocs    SegmentTermDocs  (id=103)   

       |              |              //weight(contents:dog) 
       |              |              weight    TermQuery$TermWeight  (id=106)    
       |              |              weightValue    1.1332052     
       |              |       modCount    2    
       |              |       size    2    
       |              |---prohibitedScorers    ArrayList  (id=77)    
       |              |        elementData    Object[10]  (id=84)     
       |              |        size    0    
       |              |---requiredScorers    ArrayList  (id=78)    
       |                       elementData    Object[10]  (id=85)     
       |                       size    0    
       |             similarity    DefaultSimilarity  (id=64)     
       |     size    1    
       |---prohibitedScorers    ArrayList  (id=60)    
       |       |  elementData    Object[10]  (id=71)    
       |       |---[0]    BooleanScorer2  (id=81)    
       |              |  coordinator    BooleanScorer2$Coordinator  (id=114)    
       |              |  countingSumScorer    BooleanScorer2$1  (id=115)     
       |              |  minNrShouldMatch    0    
       |              |---optionalScorers    ArrayList  (id=116)    
       |              |       |  elementData    Object[10]  (id=119)    
       |              |       |---[0]    BooleanScorer2  (id=122)    
       |              |       |       |  coordinator    BooleanScorer2$Coordinator  (id=124)    
       |              |       |       |  countingSumScorer    BooleanScorer2$1  (id=125)     
       |              |       |       |  minNrShouldMatch    0    
       |              |       |       |---optionalScorers    ArrayList  (id=126)    
       |              |       |       |       |  elementData    Object[10]  (id=138)    
       |              |       |       |       |---[0]    TermScorer  (id=156)     
       |              |       |       |       |       docs    int[32]  (id=162)    
       |              |       |       |       |       freqs    int[32]  (id=163)    
       |              |       |       |       |       norms    byte[4]  (id=96)    
       |              |       |       |       |       pointer    0    
       |              |       |       |       |       pointerMax    1    
       |              |       |       |       |       scoreCache    float[32]  (id=164)    
       |              |       |       |       |       similarity    DefaultSimilarity  (id=64)    
       |              |       |       |       |       termDocs    SegmentTermDocs  (id=165) 

       |              |       |       |       |       //weight(contents:eat)   
       |              |       |       |       |       weight    TermQuery$TermWeight  (id=166)    
       |              |       |       |       |       weightValue    2.107161    
       |              |       |       |       |---[1]    TermScorer  (id=157)    
       |              |       |       |              doc    -1    
       |              |       |       |              doc    1    
       |              |       |       |              docs    int[32]  (id=171)    
       |              |       |       |              freqs    int[32]  (id=172)    
       |              |       |       |              norms    byte[4]  (id=96)    
       |              |       |       |              pointer    1    
       |              |       |       |              pointerMax    3    
       |              |       |       |              scoreCache    float[32]  (id=173)    
       |              |       |       |              similarity    DefaultSimilarity  (id=64)    
       |              |       |       |              termDocs    SegmentTermDocs  (id=180)   

       |              |       |       |             //weight(contents:cat^0.33333325) 
       |              |       |       |              weight    TermQuery$TermWeight  (id=181)    
       |              |       |       |              weightValue    0.22293752     
       |              |       |       |          size    2    
       |              |       |       |---prohibitedScorers    ArrayList  (id=127)    
       |              |       |       |        elementData    Object[10]  (id=140)    
       |              |       |       |        modCount    0    
       |              |       |       |        size    0    
       |              |       |       |---requiredScorers    ArrayList  (id=128)    
       |              |       |               elementData    Object[10]  (id=142)    
       |              |       |               modCount    0    
       |              |       |               size    0    
       |              |       |      similarity    BooleanQuery$1  (id=129)    
       |              |       |---[1]    TermScorer  (id=123)    
       |              |              doc    -1    
       |              |              doc    3    
       |              |              docs    int[32]  (id=131)    
       |              |              freqs    int[32]  (id=132)    
       |              |              norms    byte[4]  (id=96)    
       |              |              pointer    0    
       |              |              pointerMax    1    
       |              |              scoreCache    float[32]  (id=133)    
       |              |              similarity    DefaultSimilarity  (id=64)    
       |              |              termDocs    SegmentTermDocs  (id=134)   

       |              |             //weight(contents:foods) 
       |              |             weight    TermQuery$TermWeight  (id=135)    
       |              |             weightValue    2.107161     
       |              |         size    2    
       |              |---prohibitedScorers    ArrayList  (id=117)    
       |              |       elementData    Object[10]  (id=120)     
       |              |       size    0    
       |              |---requiredScorers    ArrayList  (id=118)    
       |                      elementData    Object[10]  (id=121)     
       |                      size    0    
       |             similarity    DefaultSimilarity  (id=64)     
       |     size    1    
       |---requiredScorers    ArrayList  (id=63)    
               |  elementData    Object[10]  (id=72)    
               |---[0]    BooleanScorer2  (id=82)     
                      |    coordinator    BooleanScorer2$Coordinator  (id=183)    
                      |    countingSumScorer    ReqExclScorer  (id=184)     
                      |    minNrShouldMatch    0    
                      |---optionalScorers    ArrayList  (id=185)    
                      |       elementData    Object[10]  (id=189)     
                      |       size    0    
                      |---prohibitedScorers    ArrayList  (id=186)    
                      |       |  elementData    Object[10]  (id=191)    
                      |       |---[0]    TermScorer  (id=195)     
                      |                docs    int[32]  (id=197)    
                      |                freqs    int[32]  (id=198)    
                      |                norms    byte[4]  (id=96)    
                      |                pointer    0    
                      |                pointerMax    0    
                      |                scoreCache    float[32]  (id=199)    
                      |                similarity    DefaultSimilarity  (id=64)    
                      |                termDocs    SegmentTermDocs  (id=200)   

                      |                //weight(contents:boy) 
                      |                weight    TermQuery$TermWeight  (id=201)    
                      |                weightValue    2.107161      
                      |         size    1    
                      |---requiredScorers    ArrayList  (id=187)    
                              |   elementData    Object[10]  (id=193)    
                              |---[0]    ConstantScoreQuery$ConstantScorer  (id=203)     
                                      docIdSetIterator    OpenBitSetIterator  (id=206)    
                                      similarity    DefaultSimilarity  (id=64)    
                                      theScore    0.47844642   

                                      //ConstantScore(contents:apple*) 
                                      this$0    ConstantScoreQuery
      (id=207)     
                            size    1    
                    similarity    DefaultSimilarity  (id=64)     
            size    1    
        similarity    DefaultSimilarity  (id=64)   

    image

    生成的SumScorer对象树如下:

    scorer    BooleanScorer2  (id=50)    
      |    coordinator    BooleanScorer2$Coordinator  (id=53)    
      |---countingSumScorer    ReqOptSumScorer  (id=54)     
                |---optScorer    BooleanScorer2$SingleMatchScorer  (id=79)     
                |       |    lastDocScore    NaN    
                |       |    lastScoredDoc    -1    
                |       |---scorer    BooleanScorer2  (id=73)    
                |                |    coordinator    BooleanScorer2$Coordinator  (id=74)    
                |                |---countingSumScorer    BooleanScorer2$1(DisjunctionSumScorer) (id=75)    
                |                          |    currentDoc    -1    
                |                          |    currentScore    NaN    
                |                          |    doc    -1    
                |                          |    lastDocScore    NaN    
                |                          |    lastScoredDoc    -1    
                |                          |    minimumNrMatchers    1    
                |                          |    nrMatchers    -1    
                |                          |    nrScorers    2    
                |                          |    scorerDocQueue    ScorerDocQueue  (id=243)    
                |                          |    similarity    null    
                |                          |---subScorers    ArrayList  (id=76)    
                |                                    |  elementData    Object[10]  (id=83)    
                |                                   |---[0]    ConstantScoreQuery$ConstantScorer  (id=86)    
                |                                    |        doc    -1    
                |                                    |        doc    -1    
                |                                    |        docIdSetIterator    OpenBitSetIterator  (id=88)    
                |                                    |        similarity    DefaultSimilarity  (id=64)    
                |                                    |        theScore    0.47844642   

                |                                    |        //ConstantScore(contents:cat*) 
                |                                    |        this$0    ConstantScoreQuery  (id=90)    
                |                                    |---[1]    TermScorer  (id=87)    
                |                                             doc    -1     
                |                                             doc    0    
                |                                             docs    int[32]  (id=93)    
                |                                             freqs    int[32]  (id=95)    
                |                                             norms    byte[4]  (id=96)    
                |                                             pointer    0    
                |                                             pointerMax    2    
                |                                             scoreCache    float[32]  (id=98)    
                |                                             similarity    DefaultSimilarity  (id=64)    
                |                                             termDocs    SegmentTermDocs  (id=103)  

                |                                             //weight(contents:dog)  
                |                                             weight    TermQuery$TermWeight  (id=106)    
                |                                             weightValue    1.1332052     
                |                size    2    
                |            this$0    BooleanScorer2  (id=73)     
                |        minNrShouldMatch    0    
                |        optionalScorers    ArrayList  (id=76)    
                |        prohibitedScorers    ArrayList  (id=77)    
                |        requiredScorers    ArrayList  (id=78)    
                |        similarity    DefaultSimilarity  (id=64)    
                |    similarity    DefaultSimilarity  (id=64)    
                |    this$0    BooleanScorer2  (id=50)    
                |---reqScorer    ReqExclScorer  (id=80)     
                         |---exclDisi    BooleanScorer2  (id=81)     
                         |         |    coordinator    BooleanScorer2$Coordinator  (id=114)    
                         |         |---countingSumScorer    BooleanScorer2$1(DisjunctionSumScorer) (id=115)    
                         |                    |    currentDoc    -1    
                         |                    |    currentScore    NaN    
                         |                    |    doc    -1    
                         |                    |    lastDocScore    NaN    
                         |                    |    lastScoredDoc    -1    
                         |                    |    minimumNrMatchers    1    
                         |                    |    nrMatchers    -1    
                         |                    |    nrScorers    2    
                         |                    |    scorerDocQueue    ScorerDocQueue  (id=260)    
                         |                    |    similarity    null    
                         |                    |---subScorers    ArrayList  (id=116)    
                         |                              |  elementData    Object[10]  (id=119)    
                         |                              |---[0]    BooleanScorer2  (id=122)     
                         |                              |       |    coordinator    BooleanScorer2$Coordinator  (id=124)    
                         |                              |       |---countingSumScorer    BooleanScorer2$1(DisjunctionSumScorer) (id=125)    
                         |                              |                  |    currentDoc    0    
                         |                              |                  |    currentScore    0.11146876    
                         |                              |                  |    doc    -1    
                         |                              |                  |    lastDocScore    NaN    
                         |                              |                  |    lastScoredDoc    -1    
                         |                              |                  |    minimumNrMatchers    1    
                         |                              |                  |    nrMatchers    1    
                         |                              |                  |    nrScorers    2    
                         |                              |                  |    scorerDocQueue    ScorerDocQueue  (id=270)    
                         |                              |                  |    similarity    null    
                         |                              |                  |---subScorers    ArrayList  (id=126)    
                         |                              |                            |    elementData    Object[10]  (id=138)    
                         |                              |                            |---[0]    TermScorer  (id=156)    
                         |                              |                            |           doc    -1    
                         |                              |                            |           doc    2    
                         |                              |                            |           docs    int[32]  (id=162)    
                         |                              |                            |           freqs    int[32]  (id=163)    
                         |                              |                            |           norms    byte[4]  (id=96)    
                         |                              |                            |           pointer    0    
                         |                              |                            |           pointerMax    1    
                         |                              |                            |           scoreCache    float[32]  (id=164)    
                         |                              |                            |           similarity    DefaultSimilarity  (id=64)    
                         |                              |                            |           termDocs    SegmentTermDocs  (id=165) 

                         |                              |                            |           //weight(contents:eat)   
                         |                              |                            |           weight    TermQuery$TermWeight  (id=166)    
                         |                              |                            |           weightValue    2.107161    
                         |                              |                            |---[1]    TermScorer  (id=157)    
                         |                              |                                        doc    -1    
                         |                              |                                        doc    1    
                         |                              |                                        docs    int[32]  (id=171)    
                         |                              |                                        freqs    int[32]  (id=172)    
                         |                              |                                        norms    byte[4]  (id=96)    
                         |                              |                                        pointer    1    
                         |                              |                                        pointerMax    3    
                         |                              |                                        scoreCache    float[32]  (id=173)    
                         |                              |                                        similarity    DefaultSimilarity  (id=64)    
                         |                              |                                        termDocs    SegmentTermDocs  (id=180)   

                         |                              |                                        //weight(contents:cat^0.33333325) 
                         |                              |                                       weight    TermQuery$TermWeight  (id=181)    
                         |                              |                                       weightValue    0.22293752     
                         |                              |                                    size    2    
                         |                              |                         this$0    BooleanScorer2  (id=122)    
                         |                              |             doc    -1    
                         |                              |             doc    0    
                         |                              |             minNrShouldMatch    0    
                         |                              |             optionalScorers    ArrayList  (id=126)    
                         |                              |             prohibitedScorers    ArrayList  (id=127)    
                         |                              |             requiredScorers    ArrayList  (id=128)    
                         |                              |             similarity    BooleanQuery$1  (id=129)    
                         |                              |---[1]    TermScorer  (id=123)    
                         |                                            doc    -1     
                         |                                            doc    3    
                         |                                            docs    int[32]  (id=131)    
                         |                                            freqs    int[32]  (id=132)    
                         |                                            norms    byte[4]  (id=96)    
                         |                                            pointer    0    
                         |                                            pointerMax    1    
                         |                                            scoreCache    float[32]  (id=133)    
                         |                                            similarity    DefaultSimilarity  (id=64)    
                         |                                            termDocs    SegmentTermDocs  (id=134)  

                         |                                           //weight(contents:foods)  
                         |                                           weight    TermQuery$TermWeight  (id=135)    
                         |                                           weightValue    2.107161     
                         |                                   size    2    
                         |                         this$0    BooleanScorer2  (id=81)    
                         |               doc    -1    
                         |               doc    -1    
                         |               minNrShouldMatch    0    
                         |               optionalScorers    ArrayList  (id=116)    
                         |               prohibitedScorers    ArrayList  (id=117)    
                         |               requiredScorers    ArrayList  (id=118)    
                         |               similarity    DefaultSimilarity  (id=64)    
                         |---reqScorer    BooleanScorer2$SingleMatchScorer  (id=237)    
                                    |    doc    -1     
                                    |    lastDocScore    NaN    
                                    |    lastScoredDoc    -1    
                                    |---scorer    BooleanScorer2  (id=82)    
                                             |    coordinator    BooleanScorer2$Coordinator  (id=183)    
                                             |---countingSumScorer    ReqExclScorer  (id=184)     
                                                        |---exclDisi    TermScorer  (id=195)    
                                                        |        doc    -1    
                                                        |        doc    -1    
                                                        |        docs    int[32]  (id=197)    
                                                        |        freqs    int[32]  (id=198)    
                                                        |        norms    byte[4]  (id=96)    
                                                        |        pointer    0    
                                                        |        pointerMax    0    
                                                        |        scoreCache    float[32]  (id=199)    
                                                        |        similarity    DefaultSimilarity  (id=64)    
                                                        |        termDocs    SegmentTermDocs  (id=200)  

                                                        |        //weight(contents:boy)  
                                                        |        weight    TermQuery$TermWeight  (id=201)    
                                                        |        weightValue    2.107161    
                                                        |---reqScorer    BooleanScorer2$2(ConjunctionScorer)  (id=281)    
                                                                 |     coord    1.0    
                                                                 |     doc    -1     
                                                                 |     lastDoc    -1    
                                                                 |     lastDocScore    NaN    
                                                                 |     lastScoredDoc    -1    
                                                                 |---scorers    Scorer[1]  (id=283)     
                                                                          |---[0]    ConstantScoreQuery$ConstantScorer  (id=203)     
                                                                                    doc    -1    
                                                                                    doc    -1    
                                                                                    docIdSetIterator    OpenBitSetIterator  (id=206)    
                                                                                    similarity    DefaultSimilarity  (id=64)    
                                                                                    theScore    0.47844642 

                                                                                   //ConstantScore(contents:apple*)   
                                                                                   this$0    ConstantScoreQuery
      (id=207)    
                                                                     similarity    DefaultSimilarity  (id=64)    
                                                                     this$0    BooleanScorer2  (id=82)    
                                                                     val$requiredNrMatchers    1    
                                                               similarity    null      
                                                    minNrShouldMatch    0    
                                                    optionalScorers    ArrayList  (id=185)    
                                                    prohibitedScorers    ArrayList  (id=186)    
                                                    requiredScorers    ArrayList  (id=187)    
                                                    similarity    DefaultSimilarity  (id=64)    
                                         similarity    DefaultSimilarity  (id=64)    
                                         this$0    BooleanScorer2  (id=50)    
                              similarity    null    
                     similarity    null     
           minNrShouldMatch    0    
           optionalScorers    ArrayList  (id=55)    
           prohibitedScorers    ArrayList  (id=60)    
           requiredScorers    ArrayList  (id=63)    
           similarity    DefaultSimilarity  (id=64)   

    image

    2.4、搜索查询对象

    2.4.3、进行倒排表合并

    在得到了Scorer对象树以及SumScorer对象树后,便是倒排表的合并以及打分计算的过程。

    合并倒排表在此节中进行分析,而Scorer对象树来进行打分的计算则在下一节分析。

    BooleanScorer2.score(Collector) 代码如下:

    public void score(Collector collector) throws IOException {

      collector.setScorer(this);

      while ((doc = countingSumScorer.nextDoc()) != NO_MORE_DOCS) {

        collector.collect(doc);

      }

    }

    从代码我们可以看出,此过程就是不断的取下一篇文档号,然后加入文档结果集。

    取下一篇文档的过程,就是合并倒排表的过程,也就是对多个查询条件进行综合考虑后的下一篇文档的编号。

    由于SumScorer是一棵树,因而合并倒排表也是按照树的结构进行的,先合并子树,然后子树与子树再进行合并,直到根。

    按照上一节的分析,倒排表的合并主要用了以下几个SumScorer:

    • 交集ConjunctionScorer
    • 并集DisjunctionSumScorer
    • 差集ReqExclScorer
    • ReqOptSumScorer

    下面我们一一分析:

    2.4.3.1、交集ConjunctionScorer(+A +B)

    ConjunctionScorer中有成员变量Scorer[] scorers,是一个Scorer的数组,每一项代表一个倒排表,ConjunctionScorer就是对这些倒排表取交集,然后将交集中的文档号在nextDoc()函数中依次返回。

    为了描述清楚此过程,下面举一个具体的例子来解释倒排表合并的过程:

    (1) 倒排表最初如下:

    image

    (2) 在ConjunctionScorer的构造函数中,首先调用每个Scorer的nextDoc()函数,使得每个Scorer得到自己的第一篇文档号。

    for (int i = 0; i < scorers.length; i++) {

      if (scorers[i].nextDoc() == NO_MORE_DOCS) {

        //由于是取交集,因而任何一个倒排表没有文档,交集就为空。

        lastDoc = NO_MORE_DOCS;

        return;

      }

    }

    (3) 在ConjunctionScorer的构造函数中,将Scorer按照第一篇的文档号从小到大进行排列。

    Arrays.sort(scorers, new Comparator() {

      public int compare(Scorer o1, Scorer o2) {

        return o1.docID() - o2.docID();

      }

    });

    倒排表如下:

    image

    (4) 在ConjunctionScorer的构造函数中,第一次调用doNext()函数。

    if (doNext() == NO_MORE_DOCS) {

      lastDoc = NO_MORE_DOCS;

      return;

    }

    private int doNext() throws IOException {

      int first = 0;

      int doc = scorers[scorers.length - 1].docID();

      Scorer firstScorer;

      while ((firstScorer = scorers[first]).docID() < doc) {

        doc = firstScorer.advance(doc);

        first = first == scorers.length - 1 ? 0 : first + 1;

      }

      return doc;

    }

    姑且我们称拥有最小文档号的倒排表称为first,其实从doNext()函数中的first = first == scorers.length - 1 ? 0 : first + 1;我们可以看出,在处理过程中,Scorer数组被看成一个循环数组(Ring)。

    而此时scorer[scorers.length - 1]拥有最大的文档号,doNext()中的循环,将所有的小于当前数组中最大文档号的文档全部用firstScorer.advance(doc)(其跳到大于或等于doc的文档)函数跳过,因为既然它们小于最大的文档号,而ConjunctionScorer又是取交集,它们当然不会在交集中。

    此过程如下:

    • doc = 8,first指向第0项,advance到大于8的第一篇文档,也即文档10,然后设doc = 10,first指向第1项。

    image

    • doc = 10,first指向第1项,advance到文档11,然后设doc = 11,first指向第2项。

    image

    • doc = 11,first指向第2项,advance到文档11,然后设doc = 11,first指向第3项。

    image

    • doc = 11,first指向第3项,advance到文档11,然后设doc = 11,first指向第4项。

    image

    • doc = 11,first指向第4项,advance到文档11,然后设doc = 11,first指向第5项。

    image

    • doc = 11,first指向第5项,advance到文档11,然后设doc = 11,first指向第6项。

    image

    • doc = 11,first指向第6项,advance到文档11,然后设doc = 11,first指向第7项。

    image

    • doc = 11,first指向第7项,advance到文档11,然后设doc = 11,first指向第0项。

    image

    • doc = 11,first指向第0项,advance到文档11,然后设doc = 11,first指向第1项。

    image

    • doc = 11,first指向第1项。因为11 < 11为false,因而结束循环,返回doc = 11。这时候我们会发现,在循环退出的时候,所有的倒排表的第一篇文档都是11。

    image

    (5) 当BooleanScorer2.score(Collector)中第一次调用ConjunctionScorer.nextDoc()的时候,lastDoc为-1,根据nextDoc函数的实现,返回lastDoc = scorers[scorers.length - 1].docID()也即返回11,lastDoc也设为11。

    public int nextDoc() throws IOException {

      if (lastDoc == NO_MORE_DOCS) {

        return lastDoc;

      } else if (lastDoc == -1) {

        return lastDoc = scorers[scorers.length - 1].docID();

      }

      scorers[(scorers.length - 1)].nextDoc();

      return lastDoc = doNext();

    }

    (6) 在BooleanScorer2.score(Collector)中,调用nextDoc()后,collector.collect(doc)来收集文档号(收集过程下节分析),在收集文档的过程中,ConjunctionScorer.docID()会被调用,返回lastDoc,也即当前的文档号为11。

    (7) 当BooleanScorer2.score(Collector)第二次调用ConjunctionScorer.nextDoc()时:

    • 根据nextDoc函数的实现,首先调用scorers[(scorers.length - 1)].nextDoc(),取最后一项的下一篇文档13。

    image

    • 然后调用lastDoc = doNext(),设doc = 13,first = 0,进入循环。
    • doc = 13,first指向第0项,advance到文档13,然后设doc = 13,first指向第1项。

    image

    • doc = 13,first指向第1项,advance到文档13,然后设doc = 13,first指向第2项。

    image

    • doc = 13,first指向第2项,advance到文档13,然后设doc = 13,first指向第3项。

    image

    • doc = 13,first指向第3项,advance到文档13,然后设doc = 13,first指向第4项。

    image

    • doc = 13,first指向第4项,advance到文档13,然后设doc = 13,first指向第5项。

    image

    • doc = 13,first指向第5项,advance到文档13,然后设doc = 13,first指向第6项。

    image

    • doc = 13,first指向第6项,advance到文档13,然后设doc = 13,first指向第7项。

    image

    • doc = 13,first指向第7项,advance到文档13,然后设doc = 13,first指向第0项。

    image

    • doc = 13,first指向第0项。因为13 < 13为false,因而结束循环,返回doc = 13。在循环退出的时候,所有的倒排表的第一篇文档都是13。

    image

    (8) lastDoc设为13,在收集文档的过程中,ConjunctionScorer.docID()会被调用,返回lastDoc,也即当前的文档号为13。

    (9) 当再次调用nextDoc()的时候,返回NO_MORE_DOCS,倒排表合并结束。

    2.4.3.2、并集DisjunctionSumScorer(A OR B)

    DisjunctionSumScorer中有成员变量List subScorers,是一个Scorer的链表,每一项代表一个倒排表,DisjunctionSumScorer就是对这些倒排表取并集,然后将并集中的文档号在nextDoc()函数中依次返回。

    DisjunctionSumScorer还有一个成员变量minimumNrMatchers,表示最少需满足的子条件的个数,也即subScorer中,必须有至少minimumNrMatchers个Scorer都包含某个文档号,此文档号才能够返回。

    为了描述清楚此过程,下面举一个具体的例子来解释倒排表合并的过程:

    (1) 假设minimumNrMatchers = 4,倒排表最初如下:

    image

    (2) 在DisjunctionSumScorer的构造函数中,将倒排表放入一个优先级队列scorerDocQueue中(scorerDocQueue的实现是一个最小堆),队列中的Scorer按照第一篇文档的大小排序。

    private void initScorerDocQueue() throws IOException {

      scorerDocQueue = new ScorerDocQueue(nrScorers);

      for (Scorer se : subScorers) {

        if (se.nextDoc() != NO_MORE_DOCS) { //此处的nextDoc使得每个Scorer得到第一篇文档号。

          scorerDocQueue.insert(se);

        }

      }

    }

    image

    (3) 当BooleanScorer2.score(Collector)中第一次调用nextDoc()的时候,advanceAfterCurrent被调用。

    public int nextDoc() throws IOException {

      if (scorerDocQueue.size() < minimumNrMatchers || !advanceAfterCurrent()) {

        currentDoc = NO_MORE_DOCS;

      }

      return currentDoc;

    }

    protected boolean advanceAfterCurrent() throws IOException {

      do {

        currentDoc = scorerDocQueue.topDoc(); //当前的文档号为最顶层

        currentScore = scorerDocQueue.topScore(); //当前文档的打分

        nrMatchers = 1; //当前文档满足的子条件的个数,也即包含当前文档号的Scorer的个数

        do {

          //所谓topNextAndAdjustElsePop是指,最顶层(top)的Scorer取下一篇文档(Next),如果能够取到,则最小堆的堆顶可能不再是最小值了,需要调整(Adjust,其实是downHeap()),如果不能够取到,则最顶层的Scorer已经为空,则弹出队列(Pop)。

          if (!scorerDocQueue.topNextAndAdjustElsePop()) {

            if (scorerDocQueue.size() == 0) {

              break; // nothing more to advance, check for last match.

            }

          }

          //当最顶层的Scorer取到下一篇文档,并且调整完毕后,再取出此时最上层的Scorer的第一篇文档,如果不是currentDoc,说明currentDoc此文档号已经统计完毕nrMatchers,则退出内层循环。

          if (scorerDocQueue.topDoc() != currentDoc) {

            break; // All remaining subscorers are after currentDoc.

          }

          //否则nrMatchers加一,也即又多了一个Scorer也包含此文档号。

          currentScore += scorerDocQueue.topScore();

          nrMatchers++;

        } while (true);

        //如果统计出的nrMatchers大于最少需满足的子条件的个数,则此currentDoc就是满足条件的文档,则返回true,在收集文档的过程中,DisjunctionSumScorer.docID()会被调用,返回currentDoc。

        if (nrMatchers >= minimumNrMatchers) {

          return true;

        } else if (scorerDocQueue.size() < minimumNrMatchers) {

          return false;

        }

      } while (true);

    }

    advanceAfterCurrent具体过程如下:

    • 最初,currentDoc=2,文档2的nrMatchers=1

    image

    • 最顶层的Scorer 0取得下一篇文档,为文档3,重新调整最小堆后如下图。此时currentDoc等于最顶层Scorer 1的第一篇文档号,都为2,文档2的nrMatchers为2。

    image

    • 最顶层的Scorer 1取得下一篇文档,为文档8,重新调整最小堆后如下图。此时currentDoc等于最顶层Scorer 3的第一篇文档号,都为2,文档2的nrMatchers为3。

    image

    • 最顶层的Scorer 3取得下一篇文档,为文档7,重新调整最小堆后如下图。此时currentDoc还为2,不等于最顶层Scorer 2的第一篇文档3,于是退出内循环。此时检查,发现文档2的nrMatchers为3,小于minimumNrMatchers,不满足条件。于是currentDoc设为最顶层Scorer 2的第一篇文档3,nrMatchers设为1,重新进入下一轮循环。

    image

    • 最顶层的Scorer 2取得下一篇文档,为文档5,重新调整最小堆后如下图。此时currentDoc等于最顶层Scorer 4的第一篇文档号,都为3,文档3的nrMatchers为2。

    image

    • 最顶层的Scorer 4取得下一篇文档,为文档7,重新调整最小堆后如下图。此时currentDoc等于最顶层Scorer 0的第一篇文档号,都为3,文档3的nrMatchers为3。

    image

    • 最顶层的Scorer 0取得下一篇文档,为文档5,重新调整最小堆后如下图。此时currentDoc还为3,不等于最顶层Scorer 0的第一篇文档5,于是退出内循环。此时检查,发现文档3的nrMatchers为3,小于minimumNrMatchers,不满足条件。于是currentDoc设为最顶层Scorer 0的第一篇文档5,nrMatchers设为1,重新进入下一轮循环。

    image

    • 最顶层的Scorer 0取得下一篇文档,为文档7,重新调整最小堆后如下图。此时currentDoc等于最顶层Scorer 2的第一篇文档号,都为5,文档5的nrMatchers为2。

     image

    • 最顶层的Scorer 2取得下一篇文档,为文档7,重新调整最小堆后如下图。此时currentDoc还为5,不等于最顶层Scorer 2的第一篇文档7,于是退出内循环。此时检查,发现文档5的nrMatchers为2,小于minimumNrMatchers,不满足条件。于是currentDoc设为最顶层Scorer 2的第一篇文档7,nrMatchers设为1,重新进入下一轮循环。

    image

    • 最顶层的Scorer 2取得下一篇文档,为文档8,重新调整最小堆后如下图。此时currentDoc等于最顶层Scorer 3的第一篇文档号,都为7,文档7的nrMatchers为2。

    image

    • 最顶层的Scorer 3取得下一篇文档,为文档9,重新调整最小堆后如下图。此时currentDoc等于最顶层Scorer 4的第一篇文档号,都为7,文档7的nrMatchers为3。

    image

    • 最顶层的Scorer 4取得下一篇文档,结果为空,Scorer 4所有的文档遍历完毕,弹出队列,重新调整最小堆后如下图。此时currentDoc等于最顶层Scorer 0的第一篇文档号,都为7,文档7的nrMatchers为4。

    image

    • 最顶层的Scorer 0取得下一篇文档,为文档9,重新调整最小堆后如下图。此时currentDoc还为7,不等于最顶层Scorer 1的第一篇文档8,于是退出内循环。此时检查,发现文档7的nrMatchers为4,大于等于minimumNrMatchers,满足条件,返回true,退出外循环。

    image

    (4) currentDoc设为7,在收集文档的过程中,DisjunctionSumScorer.docID()会被调用,返回currentDoc,也即当前的文档号为7。

    (5) 当再次调用nextDoc()的时候,文档8, 9, 11都不满足要求,最后返回NO_MORE_DOCS,倒排表合并结束。

    2.4.3.3、差集ReqExclScorer(+A -B)

    ReqExclScorer有成员变量Scorer reqScorer表示必须满足的部分(required),成员变量DocIdSetIterator exclDisi表示必须不能满足的部分,ReqExclScorer就是返回reqScorer和exclDisi的倒排表的差集,也即在reqScorer的倒排表中排除exclDisi中的文档号。

    当nextDoc()调用的时候,首先取得reqScorer的第一个文档号,然后toNonExcluded()函数则判断此文档号是否被exclDisi排除掉,如果没有,则返回此文档号,如果排除掉,则取下一个文档号,看是否被排除掉,依次类推,直到找到一个文档号,或者返回NO_MORE_DOCS。

    public int nextDoc() throws IOException {

      if (reqScorer == null) {

        return doc;

      }

      doc = reqScorer.nextDoc();

      if (doc == NO_MORE_DOCS) {

        reqScorer = null;

        return doc;

      }

      if (exclDisi == null) {

        return doc;

      }

      return doc = toNonExcluded();

    }

    private int toNonExcluded() throws IOException {

      //取得被排除的文档号

      int exclDoc = exclDisi.docID();

      //取得当前required文档号

      int reqDoc = reqScorer.docID();

      do { 

       //如果required文档号小于被排除的文档号,由于倒排表是按照从小到大的顺序排列的,因而此required文档号不会被排除,返回。

        if (reqDoc < exclDoc) {

          return reqDoc;

        } else if (reqDoc > exclDoc) {

        //如果required文档号大于被排除的文档号,则此required文档号有可能被排除。于是exclDisi移动到大于或者等于required文档号的文档。

          exclDoc = exclDisi.advance(reqDoc);

          //如果被排除的倒排表遍历结束,则required文档号不会被排除,返回。

          if (exclDoc == NO_MORE_DOCS) {

            exclDisi = null;

            return reqDoc;

          }

         //如果exclDisi移动后,大于required文档号,则required文档号不会被排除,返回。

          if (exclDoc > reqDoc) {

            return reqDoc; // not excluded

          }

        }

        //如果required文档号等于被排除的文档号,则被排除,取下一个required文档号。

      } while ((reqDoc = reqScorer.nextDoc()) != NO_MORE_DOCS);

      reqScorer = null;

      return NO_MORE_DOCS;

    }

    2.4.3.4、ReqOptSumScorer(+A B)

    ReqOptSumScorer包含两个成员变量,Scorer reqScorer代表必须(required)满足的文档倒排表,Scorer optScorer代表可以(optional)满足的文档倒排表。

    如代码显示,在nextDoc()中,返回的就是required的文档倒排表,只不过在计算score的时候打分更高。

    public int nextDoc() throws IOException {

      return reqScorer.nextDoc();

    }

    2.4.3.5、有关BooleanScorer及scoresDocsOutOfOrder

    在BooleanWeight.scorer生成Scorer树的时候,除了生成上述的BooleanScorer2外, 还会生成BooleanScorer,是在以下的条件下:

    • !scoreDocsInOrder:根据2.4.2节的步骤(c),scoreDocsInOrder = !collector.acceptsDocsOutOfOrder(),此值是在search中调用TopScoreDocCollector.create(nDocs, !weight.scoresDocsOutOfOrder())的时候设定的,scoreDocsInOrder = !weight.scoresDocsOutOfOrder(),其代码如下:

    public boolean scoresDocsOutOfOrder() {

      int numProhibited = 0;

      for (BooleanClause c : clauses) {

        if (c.isRequired()) {

          return false;

        } else if (c.isProhibited()) {

          ++numProhibited;

        }

      }

      if (numProhibited > 32) {

        return false;

      }

      return true;

    }

    • topScorer:根据2.4.2节的步骤(c),此值为true。
    • required.size() == 0,没有必须满足的子语句。
    • prohibited.size() < 32,不需不能满足的子语句小于32。

    从上面可以看出,最后两个条件和scoresDocsOutOfOrder函数中的逻辑是一致的。

    下面我们看看BooleanScorer如何合并倒排表的:

    public int nextDoc() throws IOException {

      boolean more;

      do {

        //bucketTable等于是存放合并后的倒排表的文档队列

        while (bucketTable.first != null) {

          //从队列中取出第一篇文档,返回

          current = bucketTable.first;

          bucketTable.first = current.next;

          if ((current.bits & prohibitedMask) == 0 &&

              (current.bits & requiredMask) == requiredMask &&

              current.coord >= minNrShouldMatch) {

            return doc = current.doc;

          }

        }

        //如果队列为空,则填充队列。

        more = false;

        end += BucketTable.SIZE;

        //按照Scorer的顺序,依次用Scorer中的倒排表填充队列,填满为止。

        for (SubScorer sub = scorers; sub != null; sub = sub.next) {

          Scorer scorer = sub.scorer;

          sub.collector.setScorer(scorer);

          int doc = scorer.docID();

          while (doc < end) {

            sub.collector.collect(doc);

            doc = scorer.nextDoc();

          }

          more |= (doc != NO_MORE_DOCS);

        }

      } while (bucketTable.first != null || more);

      return doc = NO_MORE_DOCS;

    }

    public final void collect(final int doc) throws IOException {

      final BucketTable table = bucketTable;

      final int i = doc & BucketTable.MASK;

      Bucket bucket = table.buckets[i];

      if (bucket == null)

        table.buckets[i] = bucket = new Bucket();

      if (bucket.doc != doc) { 

        bucket.doc = doc;

        bucket.score = scorer.score();

        bucket.bits = mask;

        bucket.coord = 1;

        bucket.next = table.first;

        table.first = bucket;

      } else {

        bucket.score += scorer.score();

        bucket.bits |= mask;

        bucket.coord++;

      }

    }

    从上面的实现我们可以看出,BooleanScorer合并倒排表的时候,并不是按照文档号从小到大的顺序排列的。

    从原理上我们可以理解,在AND的查询条件下,倒排表的合并按照算法需要按照文档号从小到大的顺序排列。然而在没有AND的查询条件下,如果都是OR,则文档号是否按照顺序返回就不重要了,因而scoreDocsInOrder就是false。

    因而上面的DisjunctionSumScorer,其实"apple boy dog"是不能产生DisjunctionSumScorer的,而仅有在有AND的查询条件下,才产生DisjunctionSumScorer。

    我们做实验如下:

    对于查询语句"apple boy dog",生成的Scorer如下:

    scorer    BooleanScorer  (id=34)    
        bucketTable    BooleanScorer$BucketTable  (id=39)    
        coordFactors    float[4]  (id=41)    
        current    null    
        doc    -1    
        doc    -1    
        end    0    
        maxCoord    4    
        minNrShouldMatch    0    
        nextMask    1    
        prohibitedMask    0    
        requiredMask    0    
        scorers    BooleanScorer$SubScorer  (id=43)    
            collector    BooleanScorer$BooleanScorerCollector  (id=49)    
            next    BooleanScorer$SubScorer  (id=51)    
                collector    BooleanScorer$BooleanScorerCollector  (id=68)    
                next    BooleanScorer$SubScorer  (id=69)    
                    collector    BooleanScorer$BooleanScorerCollector  (id=76)    
                    next    null    
                    prohibited    false    
                    required    false    
                    scorer    TermScorer  (id=77)    
                        doc    -1    
                        doc    0    
                        docs    int[32]  (id=79)    
                        freqs    int[32]  (id=80)    
                        norms    byte[4]  (id=58)    
                        pointer    0    
                        pointerMax    2    
                        scoreCache    float[32]  (id=81)    
                        similarity    DefaultSimilarity  (id=45)    
                        termDocs    SegmentTermDocs  (id=82)    
                        weight    TermQuery$TermWeight (id=84)  //weight(contents:apple)  
                        weightValue    0.828608    
                prohibited    false    
                required    false    
                scorer    TermScorer  (id=70)    
                    doc    -1    
                    doc    1    
                    docs    int[32]  (id=72)    
                    freqs    int[32]  (id=73)    
                    norms    byte[4]  (id=58)    
                    pointer    0    
                    pointerMax    1    
                    scoreCache    float[32]  (id=74)    
                    similarity    DefaultSimilarity  (id=45)    
                    termDocs    SegmentTermDocs  (id=86)    
                    weight    TermQuery$TermWeight  (id=87) //weight(contents:boy)   
                    weightValue    1.5407716    
            prohibited    false    
            required    false    
            scorer    TermScorer  (id=52)    
                doc    -1    
                doc    0    
                docs    int[32]  (id=54)    
                freqs    int[32]  (id=56)    
                norms    byte[4]  (id=58)    
                pointer    0    
                pointerMax    3    
                scoreCache    float[32]  (id=61)    
                similarity    DefaultSimilarity  (id=45)    
                termDocs    SegmentTermDocs  (id=62)    
                weight    TermQuery$TermWeight  (id=66)  //weight(contents:cat)   
                weightValue    0.48904076    
        similarity    DefaultSimilarity  (id=45)   

    对于查询语句"+hello (apple boy dog)",生成的Scorer对象如下:

    scorer    BooleanScorer2  (id=40)    
        coordinator    BooleanScorer2$Coordinator  (id=42)    
        countingSumScorer    ReqOptSumScorer  (id=43)     
        minNrShouldMatch    0    
        optionalScorers    ArrayList  (id=44)    
            elementData    Object[10]  (id=62)    
                [0]    BooleanScorer2  (id=84)    
                    coordinator    BooleanScorer2$Coordinator  (id=87)    
                    countingSumScorer    BooleanScorer2$1  (id=88)     
                    minNrShouldMatch    0    
                    optionalScorers    ArrayList  (id=89)    
                        elementData    Object[10]  (id=95)    
                            [0]    TermScorer  (id=97)     
                                docs    int[32]  (id=101)    
                                freqs    int[32]  (id=102)    
                                norms    byte[4]  (id=71)    
                                pointer    0    
                                pointerMax    2    
                                scoreCache    float[32]  (id=103)    
                                similarity    DefaultSimilarity  (id=48)    
                                termDocs    SegmentTermDocs  (id=104)   

                                //weight(contents:apple) 
                                weight    TermQuery$TermWeight
      (id=105)    
                                weightValue    0.525491    
                            [1]    TermScorer  (id=98)     
                                docs    int[32]  (id=107)    
                                freqs    int[32]  (id=108)    
                                norms    byte[4]  (id=71)    
                                pointer    0    
                                pointerMax    1    
                                scoreCache    float[32]  (id=110)    
                                similarity    DefaultSimilarity  (id=48)    
                                termDocs    SegmentTermDocs  (id=111)   

                                //weight(contents:boy) 
                                weight    TermQuery$TermWeight
      (id=112)    
                                weightValue    0.9771348    
                            [2]    TermScorer  (id=99)     
                                docs    int[32]  (id=114)    
                                freqs    int[32]  (id=118)    
                                norms    byte[4]  (id=71)    
                                pointer    0    
                                pointerMax    3    
                                scoreCache    float[32]  (id=119)    
                                similarity    DefaultSimilarity  (id=48)    
                                termDocs    SegmentTermDocs  (id=120)   

                                //weight(contents:cat) 
                               weight    TermQuery$TermWeight
      (id=121)    
                                weightValue    0.3101425     
                        size    3    
                    prohibitedScorers    ArrayList  (id=90)    
                    requiredScorers    ArrayList  (id=91)    
                    similarity    DefaultSimilarity  (id=48)     
            size    1    
        prohibitedScorers    ArrayList  (id=46)    
        requiredScorers    ArrayList  (id=47)    
            elementData    Object[10]  (id=59)    
                [0]    TermScorer  (id=66)     
                    docs    int[32]  (id=68)    
                    freqs    int[32]  (id=70)    
                    norms    byte[4]  (id=71)    
                    pointer    0    
                    pointerMax    0    
                    scoreCache    float[32]  (id=73)    
                    similarity    DefaultSimilarity  (id=48)    
                    termDocs    SegmentTermDocs  (id=76)    
                    weight    TermQuery$TermWeight  (id=78)   //weight(contents:hello) 
                    weightValue    2.6944637     
            size    1    
        similarity    DefaultSimilarity  (id=48)   

    2.4、搜索查询对象

    2.4.4、收集文档结果集合及计算打分

    在函数IndexSearcher.search(Weight, Filter, int) 中,有如下代码:

    TopScoreDocCollector collector = TopScoreDocCollector.create(nDocs, !weight.scoresDocsOutOfOrder());

    search(weight, filter, collector);

    return collector.topDocs();

    2.4.4.1、创建结果文档收集器

    TopScoreDocCollector collector = TopScoreDocCollector.create(nDocs, !weight.scoresDocsOutOfOrder());

    public static TopScoreDocCollector create(int numHits, boolean docsScoredInOrder) {

      if (docsScoredInOrder) {

        return new InOrderTopScoreDocCollector(numHits);

      } else {

        return new OutOfOrderTopScoreDocCollector(numHits);

      }

    }

    其根据是否按照文档号从小到大返回文档而创建InOrderTopScoreDocCollector或者OutOfOrderTopScoreDocCollector,两者的不同在于收集文档的方式不同。

    2.4.4.2、收集文档号

    当创建完毕Scorer对象树和SumScorer对象树后,IndexSearcher.search(Weight, Filter, Collector) 有以下调用:

    scorer.score(collector) ,如下代码所示,其不断的得到合并的倒排表后的文档号,并收集它们。

    public void score(Collector collector) throws IOException {

      collector.setScorer(this);

      while ((doc = countingSumScorer.nextDoc()) != NO_MORE_DOCS) {

        collector.collect(doc);

      }

    }

    InOrderTopScoreDocCollector的collect函数如下:

    public void collect(int doc) throws IOException {

      float score = scorer.score();

      totalHits++;

      if (score <= pqTop.score) {

        return;

      }

      pqTop.doc = doc + docBase;

      pqTop.score = score;

      pqTop = pq.updateTop();

    }

    OutOfOrderTopScoreDocCollector的collect函数如下:

    public void collect(int doc) throws IOException {

      float score = scorer.score();

      totalHits++;

      doc += docBase;

      if (score < pqTop.score || (score == pqTop.score && doc > pqTop.doc)) {

        return;

      }

      pqTop.doc = doc;

      pqTop.score = score;

      pqTop = pq.updateTop();

    }

    从上面的代码可以看出,collector的作用就是首先计算文档的打分,然后根据打分,将文档放入优先级队列(最小堆)中,最后在优先级队列中取前N篇文档。

    然而存在一个问题,如果要取10篇文档,而第8,9,10,11,12篇文档的打分都相同,则抛弃那些呢?Lucene的策略是,在文档打分相同的情况下,文档号小的优先。

    也即8,9,10被保留,11,12被抛弃。

    由上面的叙述可知,创建collector的时候,根据文档是否将按照文档号从小到大的顺序返回而创建InOrderTopScoreDocCollector或者OutOfOrderTopScoreDocCollector。

    对于InOrderTopScoreDocCollector,由于文档是按照顺序返回的,后来的文档号肯定大于前面的文档号,因而当score <= pqTop.score的时候,直接抛弃。

    对于OutOfOrderTopScoreDocCollector,由于文档不是按顺序返回的,因而当score

    2.4.4.3、打分计算

    BooleanScorer2的打分函数如下:

    • 将子语句的打分乘以coord

    public float score() throws IOException {

      coordinator.nrMatchers = 0;

      float sum = countingSumScorer.score();

      return sum * coordinator.coordFactors[coordinator.nrMatchers];

    }

    ConjunctionScorer的打分函数如下:

    • 将取交集的子语句的打分相加,然后乘以coord

    public float score() throws IOException {

      float sum = 0.0f;

      for (int i = 0; i < scorers.length; i++) {

        sum += scorers[i].score();

      }

      return sum * coord;

    }

    DisjunctionSumScorer的打分函数如下:

    public float score() throws IOException { return currentScore; }

    currentScore计算如下:

    currentScore += scorerDocQueue.topScore();

    以上计算是在DisjunctionSumScorer的倒排表合并算法中进行的,其是取堆顶的打分函数。

    public final float topScore() throws IOException {

        return topHSD.scorer.score();

    }

    ReqExclScorer的打分函数如下:

    • 仅仅取required语句的打分

    public float score() throws IOException {

      return reqScorer.score();

    }

    ReqOptSumScorer的打分函数如下:

    • 上面曾经指出,ReqOptSumScorer的nextDoc()函数仅仅返回required语句的文档号。
    • 而optional的部分仅仅在打分的时候有所体现,从下面的实现可以看出optional的语句的分数加到required语句的分数上,也即文档还是required语句包含的文档,只不过是当此文档能够满足optional的语句的时候,打分得到增加。

    public float score() throws IOException {

      int curDoc = reqScorer.docID();

      float reqScore = reqScorer.score();

      if (optScorer == null) {

        return reqScore;

      }

      int optScorerDoc = optScorer.docID();

      if (optScorerDoc < curDoc && (optScorerDoc = optScorer.advance(curDoc)) == NO_MORE_DOCS) {

        optScorer = null;

        return reqScore;

      }

      return optScorerDoc == curDoc ? reqScore + optScorer.score() : reqScore;

    }

    TermScorer的打分函数如下:

    • 整个Scorer及SumScorer对象树的打分计算,最终都会源自叶子节点TermScorer上。
    • 从TermScorer的计算可以看出,它计算出tf * norm * weightValue = tf * norm * queryNorm * idf^2 * t.getBoost()

    public float score() {

      int f = freqs[pointer];

      float raw = f < SCORE_CACHE_SIZE ? scoreCache[f] : getSimilarity().tf(f)*weightValue;       

      return norms == null ? raw : raw * SIM_NORM_DECODER[norms[doc] & 0xFF];

    }

    Lucene的打分公式整体如下,2.4.1计算了图中的红色的部分,此步计算了蓝色的部分:

    image

    打分计算到此结束。

    2.4.4.4、返回打分最高的N篇文档

    IndexSearcher.search(Weight, Filter, int)中,在收集完文档后,调用collector.topDocs()返回打分最高的N篇文档:

    public final TopDocs topDocs() {

      return topDocs(0, totalHits < pq.size() ? totalHits : pq.size());

    }

    public final TopDocs topDocs(int start, int howMany) {

      int size = totalHits < pq.size() ? totalHits : pq.size();

      howMany = Math.min(size - start, howMany);

      ScoreDoc[] results = new ScoreDoc[howMany];

      //由于pq是最小堆,因而要首先弹出最小的文档。比如qp中总共有50篇文档,想取第5到10篇文档,则应该先弹出打分最小的40篇文档。

      for (int i = pq.size() - start - howMany; i > 0; i--) { pq.pop(); }

      populateResults(results, howMany);

      return newTopDocs(results, start);

    }

    protected void populateResults(ScoreDoc[] results, int howMany) {

      //然后再从pq弹出第5到10篇文档,并按照打分从大到小的顺序放入results中。

      for (int i = howMany - 1; i >= 0; i--) {

        results[i] = pq.pop();

      }

    }

    protected TopDocs newTopDocs(ScoreDoc[] results, int start) {

      return results == null ? EMPTY_TOPDOCS : new TopDocs(totalHits, results);

    }

    2.4.5、Lucene如何在搜索阶段读取索引信息

    以上叙述的是搜索过程中如何进行倒排表合并以及计算打分。然而索引信息是从索引文件中读出来的,下面分析如何读取这些信息。

    其实读取的信息无非是两种信息,一个是词典信息,一个是倒排表信息。

    词典信息的读取是在Scorer对象树生成的时候进行的,真正读取这些信息的是叶子节点TermScorer。

    倒排表信息的读取时在合并倒排表的时候进行的,真正读取这些信息的也是叶子节点TermScorer.nextDoc()。

    2.4.5.1、读取词典信息

    此步是在TermWeight.scorer(IndexReader, boolean, boolean) 中进行的,其代码如下:

    public Scorer scorer(IndexReader reader, boolean scoreDocsInOrder, boolean topScorer) {

      TermDocs termDocs = reader.termDocs(term);

      if (termDocs == null)

        return null;

      return new TermScorer(this, termDocs, similarity, reader.norms(term.field()));

    }

    ReadOnlySegmentReader.termDocs(Term)是找到Term并生成用来读倒排表的TermDocs对象:

    public TermDocs termDocs(Term term) throws IOException {

      ensureOpen();

      TermDocs termDocs = termDocs();

      termDocs.seek(term);

      return termDocs;

    }

    termDocs()函数首先生成SegmentTermDocs对象,用于读取倒排表:

    protected SegmentTermDocs(SegmentReader parent) {

      this.parent = parent;

      this.freqStream = (IndexInput) parent.core.freqStream.clone();//用于读取freq

      synchronized (parent) {

        this.deletedDocs = parent.deletedDocs;

      }

      this.skipInterval = parent.core.getTermsReader().getSkipInterval();

      this.maxSkipLevels = parent.core.getTermsReader().getMaxSkipLevels();

    }

    SegmentTermDocs.seek(Term)是读取词典中的Term,并将freqStream指向此Term对应的倒排表:

    public void seek(Term term) throws IOException {

      TermInfo ti = parent.core.getTermsReader().get(term);

      seek(ti, term);

    }

    TermInfosReader.get(Term, boolean)主要是读取词典中的Term得到TermInfo,代码如下:

      private TermInfo get(Term term, boolean useCache) {

        if (size == 0) return null;

        ensureIndexIsRead();

        TermInfo ti;

        ThreadResources resources = getThreadResources();

        SegmentTermEnum enumerator = resources.termEnum;

        seekEnum(enumerator, getIndexOffset(term));

        enumerator.scanTo(term);

        if (enumerator.term() != null && term.compareTo(enumerator.term()) == 0) {

          ti = enumerator.termInfo();

        } else {

          ti = null;

        }

        return ti;

      }

    在IndexReader打开一个索引文件夹的时候,会从tii文件中读出的Term index到indexPointers数组中,TermInfosReader.seekEnum(SegmentTermEnum enumerator, int indexOffset)负责在indexPointers数组中找Term对应的tis文件中所在的跳表区域的位置。

    private final void seekEnum(SegmentTermEnum enumerator, int indexOffset) throws IOException {

      enumerator.seek(indexPointers[indexOffset],

                     (indexOffset * totalIndexInterval) - 1,

                     indexTerms[indexOffset], indexInfos[indexOffset]);

    }

    final void SegmentTermEnum.seek(long pointer, int p, Term t, TermInfo ti) {

      input.seek(pointer);

      position = p;

      termBuffer.set(t);

      prevBuffer.reset();

      termInfo.set(ti);

    }

    SegmentTermEnum.scanTo(Term)在跳表区域中,一个一个往下找,直到找到Term:

    final int scanTo(Term term) throws IOException {

      scanBuffer.set(term);

      int count = 0;

      //不断取得下一个term到termBuffer中,目标term放入scanBuffer中,当两者相等的时候,目标Term找到。

      while (scanBuffer.compareTo(termBuffer) > 0 && next()) {

        count++;

      }

      return count;

    }

    public final boolean next() throws IOException {

      if (position++ >= size - 1) {

        prevBuffer.set(termBuffer);

        termBuffer.reset();

        return false;

      }

      prevBuffer.set(termBuffer);

      //读取Term的字符串

      termBuffer.read(input, fieldInfos);

      //读取docFreq,也即多少文档包含此Term

      termInfo.docFreq = input.readVInt();

      //读取偏移量

      termInfo.freqPointer += input.readVLong();

      termInfo.proxPointer += input.readVLong();

      if (termInfo.docFreq >= skipInterval)

          termInfo.skipOffset = input.readVInt();

      indexPointer += input.readVLong();

      return true;

    }

    TermBuffer.read(IndexInput, FieldInfos) 代码如下:

      public final void read(IndexInput input, FieldInfos fieldInfos) {

        this.term = null;

        int start = input.readVInt();

        int length = input.readVInt();

        int totalLength = start + length;

        text.setLength(totalLength);

        input.readChars(text.result, start, length);

        this.field = fieldInfos.fieldName(input.readVInt());

      }

    SegmentTermDocs.seek(TermInfo ti, Term term)根据TermInfo,将freqStream指向此Term对应的倒排表位置:

    void seek(TermInfo ti, Term term) {

      count = 0;

      FieldInfo fi = parent.core.fieldInfos.fieldInfo(term.field);

      df = ti.docFreq;

      doc = 0;

      freqBasePointer = ti.freqPointer;

      proxBasePointer = ti.proxPointer;

      skipPointer = freqBasePointer + ti.skipOffset;

      freqStream.seek(freqBasePointer);

      haveSkipped = false;

    }

    2.4.5.2、读取倒排表信息

    当读出Term的信息得到TermInfo后,并且freqStream指向此Term的倒排表位置的时候,下面就是在TermScorer.nextDoc()函数中读取倒排表信息:

    public int nextDoc() throws IOException {

      pointer++;

      if (pointer >= pointerMax) {

        pointerMax = termDocs.read(docs, freqs);   

        if (pointerMax != 0) {

          pointer = 0;

        } else {

          termDocs.close();

          return doc = NO_MORE_DOCS;

        }

      }

      doc = docs[pointer];

      return doc;

    }

    SegmentTermDocs.read(int[], int[]) 代码如下:

    public int read(final int[] docs, final int[] freqs) {

      final int length = docs.length;

      int i = 0;

      while (i < length && count < df) {

        //读取docid

        final int docCode = freqStream.readVInt();

        doc += docCode >>> 1;

        if ((docCode & 1) != 0)      

          freq = 1;        

        else

          freq = freqStream.readVInt();     //读取freq

        count++;

        if (deletedDocs == null || !deletedDocs.get(doc)) {

          docs[i] = doc;

          freqs[i] = freq;

          ++i;

        }

        return i;

      }

    }


  • 相关阅读:
    UVa 128 Software CRC
    UVa 11258 String Partition(简单DP)
    POJ 3070 Fibonacci(矩阵乘法logN)
    UVa 10280 Old Wine Into New Bottles(剪枝+完全背包)
    图论笔记第四章 欧拉图与哈密尔顿图(beta.)考点
    图。。珍藏season
    图论及其应用哈密尔顿图(alpha)
    9.保健…todo
    android 移植笔记有感
    unp_exam_要点.doc
  • 原文地址:https://www.cnblogs.com/lujinhong2/p/4637300.html
Copyright © 2020-2023  润新知