• 二叉树及其遍历方法---python实现


    github:代码实现
    本文算法均使用python3实现


    1. 二叉树

    1.1 二叉树的定义

      二叉树是一种特殊的树,它具有以下特点
      (1)树中每个节点最多只能有两棵树,即每个节点的度最多为2。
      (2)二叉树的子树有左右之分,即左子树右子树,次序不能颠倒。
      (3)二叉树即使只有一个子树时,也要区分是左子树还是右子树。

    1.2 满二叉树

      满二叉树作为一种特殊的二叉树,它是指:所有的分支节点都存在左子树与右子树,并且所有的叶子节点都在同一层上。其特点有:
      (1)叶子节点只能出现在最下面一层
      (2)非叶子节点度一定是2
      (3)在同样深度的二叉树中,满二叉树的节点个数最多,节点个数为: $ 2^h -1 $ ,其中 $ h $ 为树的深度。

    1.3 完全二叉树

      若设二叉树的深度为 $ h $ ,除第 $ h $ 层外,其它各层 $ (1~h-1) $ 的结点数都达到最大个数,第 $ h $ 层所有的结点都连续集中在最左边,这就是完全二叉树。其具有以下特点
      (1)叶子节点可以出现在最后一层或倒数第二层。
      (2)最后一层的叶子节点一定集中在左部连续位置。
      (3)完全二叉树严格按层序编号。(可利用数组或列表进行实现,满二叉树同)
      (4)若一个节点为叶子节点,那么编号比其大的节点均为叶子节点。


    2. 二叉树的相关性质

    2.1 二叉树性质

      (1)在非空二叉树的 $ i $ 层上,至多有 $ 2^{i-1} $ 个节点 $ (i geq 1) $ 。
      (2)在深度为 $ h $ 的二叉树上最多有 $ 2^h -1 $ 个节点 $(k geq 1) $ 。
      (3)对于任何一棵非空的二叉树,如果叶节点个数为 $ n_0 $ ,度数为 $ 2 $ 的节点个数为 $ n_2 $ ,则有: $ n_0 = n_2 + 1 $ 。

    2.1 完全二叉树性质

      (1)具有 $ n $ 个的结点的完全二叉树的深度为 $ log_2{n+1} $ 。.
      (2)如果有一颗有 $ n $ 个节点的完全二叉树的节点按层次序编号,对任一层的节点 $ i ,(1 geq i geq n)$ 有:
        (2.1)如果 $ i=1 $ ,则节点是二叉树的根,无双亲,如果 $ i>1 $ ,则其双亲节点为 $ lfloor i/2 floor $ 。
        (2.2)如果 $ 2i>n $ 那么节点i没有左孩子,否则其左孩子为 $ 2i $ 。
        (2.3)如果 $ 2i+1>n $ 那么节点没有右孩子,否则右孩子为 $ 2i+1 $ 。


    3. 二叉树的遍历

      以下遍历以该二叉树为例:

    3.1 前序遍历

      思想:先访问根节点,再先序遍历左子树,然后再先序遍历右子树。总的来说是根—左—右
      上图先序遍历结果为为:$ 1,2,4,8,9,5,3,6,7 $
      代码如下:

    	def PreOrder(self, root):
    		'''打印二叉树(先序)'''
    		if root == None:
    			return 
    		print(root.val, end=' ')
    		self.PreOrder(root.left)
    		self.PreOrder(root.right)
    
    

    3.2 中序遍历

      思想:先中序访问左子树,然后访问根,最后中序访问右子树。总的来说是左—根—右
      上图中序遍历结果为为:$ 8,4,9,2,5,1,6,3,7 $
      代码如下:

    	def InOrder(self, root):
    		'''中序打印'''
    		if root == None:
    			return
    		self.InOrder(root.left)
    		print(root.val, end=' ')
    		self.InOrder(root.right)
    
    

    3.3 后序遍历

      思想:先后序访问左子树,然后后序访问右子树,最后访问根。总的来说是左—右—根
      上图后序遍历结果为为:$ 8,9,4,5,2,6,7,3,1 $
      代码如下:

    	def BacOrder(self, root):
    		'''后序打印'''
    		if root == None:
    			return
    		self.BacOrder(root.left)
    		self.BacOrder(root.right)
    		print(root.val, end=' ')
    
    

    3.4 层次遍历(宽度优先遍历)

      思想:利用队列,依次将根,左子树,右子树存入队列,按照队列先进先出规则来实现层次遍历。
      上图后序遍历结果为为:$ 1,2,3,4,5,6,7,8,9 $
      代码如下:

    	def BFS(self, root):
    		'''广度优先'''
    		if root == None:
    			return
    		# queue队列,保存节点
    		queue = []
    		# res保存节点值,作为结果
    		#vals = []
    		queue.append(root)
    
    		while queue:
    			# 拿出队首节点
    			currentNode = queue.pop(0)
    			#vals.append(currentNode.val)
    			print(currentNode.val, end=' ')
    			if currentNode.left:
    				queue.append(currentNode.left)
    			if currentNode.right:
    				queue.append(currentNode.right)
    		#return vals
    
    

    3.5 深度优先遍历

      思想:利用,先将根入栈,再将根出栈,并将根的右子树,左子树存入栈,按照先进后出规则来实现深度优先遍历。
      上图后序遍历结果为为:$ 1,2,4,8,9,5,3,6,7 $
      代码如下:

    	def DFS(self, root):
    		'''深度优先'''
    		if root == None:
    			return
    		# 栈用来保存未访问节点
    		stack = []
    		# vals保存节点值,作为结果
    		#vals = []
    		stack.append(root)
    
    		while stack:
    			# 拿出栈顶节点
    			currentNode = stack.pop()
    			#vals.append(currentNode.val)
    			print(currentNode.val, end=' ')
    			if currentNode.right:
    				stack.append(currentNode.right)
    			if currentNode.left:
    				stack.append(currentNode.left)			
    		#return vals
    
    

    3.6 代码运行结果


    引用及参考:
    [1]《数据结构》李春葆著
    [2] http://www.cnblogs.com/polly333/p/4740355.html

    写在最后:本文参考以上资料进行整合与总结,属于原创,文章中可能出现理解不当的地方,若有所见解或异议可在下方评论,谢谢!
    若需转载请注明https://www.cnblogs.com/lliuye/p/9143676.html

  • 相关阅读:
    CCF认证201809-2买菜
    git删除本地保存的账号和密码
    mysql表分区
    使用java代码将时间戳和时间互相转换
    Mysql数据库表被锁定处理
    mysql查询某个数据库表的数量
    编译nginx错误:make[1]: *** [/pcre//Makefile] Error 127
    LINUX下安装pcre出现WARNING: 'aclocal-1.15' is missing on your system错误的解决办法
    linux下安装perl
    [剑指Offer]26-树的子结构
  • 原文地址:https://www.cnblogs.com/lliuye/p/9143676.html
Copyright © 2020-2023  润新知