• hdu 4983(欧拉函数)


    Goffi and GCD

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 992    Accepted Submission(s): 336


    Problem Description
    Goffi is doing his math homework and he finds an equality on his text book: gcd(na,n)×gcd(nb,n)=nk.

    Goffi wants to know the number of (a,b) satisfy the equality, if n and k are given and 1a,bn.

    Note: gcd(a,b) means greatest common divisor of a and b.
     
    Input
    Input contains multiple test cases (less than 100). For each test case, there's one line containing two integers n and k (1n,k109).
     
    Output
    For each test case, output a single integer indicating the number of (a,b) modulo 109+7.
     
    Sample Input
    2 1 3 2
     
    Sample Output
    2 1
    Hint
    For the first case, (2, 1) and (1, 2) satisfy the equality.
     
    Source
     
    题意:求使得成立的(a,b)的个数.
    首先,我们可以知道 gcd(n,a)<=n,所以当 k>2 的时候没有这样的(a,b)
    然后当 k==2 的时候我们只有一个这样的组合 (a,b) = (n,n)
    接下来考虑 k=1的情况:当 k = 1时 ,gcd(n-a,n) = gcd(a,n) (这里源自gcd的变换公式) 整个式子就转换成了 gcd(a,n)*gcd(b,n)=n
    设 gcd(a,n) 为 x,那么 gcd(a/x,n/x)=1,a/x 与 n/x 互质,利用欧拉函数 phi(x) 可以得到 a的个数,同理可以得到b的个数.并且x也是 n 的因子,所以在求解n的因子的同时就可以将(a,b)求出来了。
    这里总结一个公式:如果d是n的一个约数,那么1<=i<=n中 gcd(i,n) = d的个数是phi(n/d),即n/d的欧拉函数
    #include <stdio.h>
    #include <math.h>
    #include <iostream>
    #include <algorithm>
    #include <string.h>
    #include <vector>
    using namespace std;
    typedef long long LL;
    const LL mod = 1000000007;
    LL phi(LL x)
    {
        LL ans=x;
        for(LL i=2; i*i<=x; i++)
            if(x%i==0)
            {
                ans=ans/i*(i-1);
                while(x%i==0) x/=i;
            }
        if(x>1)
            ans=ans/x*(x-1);
        return ans;
    }
    LL n,k;
    int main()
    {
        while(scanf("%lld%lld",&n,&k)!=EOF)
        {
            if(n==1) {
                printf("1
    ");
                continue;
            }
            if(k>1)
            {
                if(k==2)
                    printf("1
    ");
                else printf("0
    ");
                continue;
            }
            LL sum = 0;
            for(LL i=1; i*i<=n; i++)
            {
                if(n%i==0)
                {
                    if(i*i==n) sum = (sum+phi(i)*phi(i))%mod;
                    else {
                        sum = (sum+2*phi(i)*phi(n/i))%mod;
                    }
                }
            }
            printf("%lld
    ",sum);
        }
        return 0;
    }
  • 相关阅读:
    SQL Server 存储过程
    Ajax从服务器端获取数据
    Ajax中Get请求与Post请求的区别
    get请求
    Post请求
    递归案例
    SQL SERVER 和ACCESS的数据导入导出
    OA
    OBS桌面视频直播软件/推流工具使用指南
    基于EasyIPCamera实现的数字网络摄像机IPCamera的模拟器IPC RTSP Simulator
  • 原文地址:https://www.cnblogs.com/liyinggang/p/5630987.html
Copyright © 2020-2023  润新知