• C++实现感知机模型


    使用C++实现感知机模型 

    最近在上机器学习课程,刚学习了感知机模型,于是决定自己动手写一下。

    设计想法 想要构建出一种通用的模型设计形式,方便之后的机器学习模型也可以套用,于是尝试将最近看的设计模式运用上,类图一中在Train_data类中使用单例模式,在类图二中使用装饰者模式。

     

    结构说明 Train_data类中封装了Data* data,通过data指针指向存储的训练数据;Perceptron_entity类中封装了Data* Weight_and_bias_stepint modle_value[N]、int  functional_margin[N]通过Weight_and_bias_step指针指向存储的权重W、偏置B以及步长n;  通过modle_value[N]存储感知机模型的值(WX+b), 通过functional_margin[N]存储函数间隔的值( Yi*(WX+b) ),   通过Perceptron_entity类来实例化感知机对象;Function类和 Optimize类分别是用来计算函数间隔和优化权重W、偏置B以及步长n。

     

    结果分析1. 事实证明,设计模式的使用是要分场景的; 在Train_data类中并不需要使用单例模式,因为我还需要对Data进行修改,在Public中写了set函数对数据进行修改,这与单例模式的本意相悖;单例模式的本意是初始化一份资源,只可以供其他函数读取。 2.  此外,对类的的设计不够清晰,将数据、权重、偏置、以及学习率封装在Data类中,导致之后函数调用不够清楚。

     

    改进想法1.对类进一步细化,将Data类分为两个类:Data和 Weight_bias,Data类封装数据;Weight_bias类封装W1、W2、B、n。   2.增强代码的复用性: 使用户能够对Perceptron_entity类中的Weight_and_bias_step进行修改,对一份数据可以定义不同Perceptron_entity的对象,可以尝试提供友元函数,破坏封装性,来达到这个目的。 3.进一步提升:使用户能够对Train_data类的对象中的原始数据进行修改和增加, 从而达到:不同数据,不同Perceptron_entity,的使用。

     

    一.类图

    二.C++代码

    Data.h文件

    #pragma once
    class Data
    {
    private:
    	int X1;
    	int X2;
    	int sample_signal;//正样本or负样本
    	bool symbol=false;//标记分类正确与否
    	int W1;
    	int W2;
    	int B;
    	int n; //步长
    
    public:
    	Data();
    	~Data();
    
    
    	void set_x1(const int x1);
    	void set_x2(const int x2);
    	void set_sample_signal(const int sample_signal);
    	void set_W1(const int W1);
    	void set_W2(const int W2);
    	void set_B(const int B);
    	void set_n(const int n);
    	void set_symbol(bool symbol);
    
    
    	int get_x1();
    	int get_x2();
    	int get_sample_signal();
    	int get_W1( );
    	int get_W2( );
    	int get_B( );
    	int get_n( );
    	bool get_symbol( );
    };
    
    Data::Data()
    {
    }
    
    Data::~Data()
    {
    }
    
    inline void Data::set_x1(const int x1)
    {
    	this->X1=x1;
    }
    
    inline void Data::set_x2(const int x2)
    {
    	this->X2 = x2;
    }
    
    
    
    
    inline void Data::set_sample_signal(const int sample_signal)
    {
    	this->sample_signal = sample_signal;
    }
    
    inline void Data::set_W1(const int W1)
    {
    	this->W1 = W1;
    }
    
    inline void Data::set_W2(const int W2)
    {
    	this->W2 = W2;
    }
    
    inline void Data::set_B(const int B)
    {
    	this->B = B;
    }
    
    inline void Data::set_n(const int n)
    {
    	this->n = n;
    }
    
    inline void Data::set_symbol(bool symbol)
    {
    	this->symbol = symbol;
    }
    
    
    inline int Data::get_x1()
    {
    	return X1;
    }
    
    inline int Data::get_x2()
    {
    	return X2;
    }
    
    inline int Data::get_sample_signal()
    {
    	return sample_signal;
    }
    
    inline int Data::get_W1()
    {
    	return W1;
    }
    
    inline int Data::get_W2()
    {
    	return W2;
    }
    
    inline int Data::get_B()
    {
    	return B;
    }
    
    inline int Data::get_n()
    {
    	return n;
    }
    
    inline bool Data::get_symbol()
    {
    	return symbol;
    }
    

     

    Train_data.h文件

    #pragma once
    #include"Data.h"
    #define N 3
    class Train_data
    {
    private:
    	Data *data;
    	static Train_data * unique_instance;
    	Train_data();
    
    public:
    
    	 int judge();
    	~Train_data();
    	 static Train_data* getinstance();
    	 Data * get_data();
    	 
    };
    
    
    Train_data* Train_data::unique_instance = nullptr;
    
    
    
    Train_data::Train_data()
    {
    	this->data = new Data[N];
    	data[0].set_x1(3);
    	data[0].set_x2(3);
    	data[0].set_sample_signal(1);
    
    	data[1].set_x1(4);
    	data[1].set_x2(3);
    	data[1].set_sample_signal(1);
    
    	data[2].set_x1(1);
    	data[2].set_x2(1);
    	data[2].set_sample_signal(-1);
    }
    
    
    Train_data::~Train_data()
    {
    	//释放数组
    	delete [ ]data;
    }
    
    inline Train_data* Train_data::getinstance()
    {
    	if (unique_instance == nullptr)
    	{
    		unique_instance = new Train_data();
    	}
    	return unique_instance;
    }
    
    inline Data * Train_data::get_data()
    {
    	return this->data;
    }
    
    
    inline int Train_data::judge()
    {
    	int number = 0;
    	for (int i = 0; i < N; i++)
    		if (data[i].get_symbol() == true)
    			  number++;
    	return number;
    }
    

      

    Perceptron.h文件

    #pragma once
    #include<iostream>
    #include<string>
    #include"Data.h"
    #include"F://python/include/Python.h"
    using namespace std;
    
    class Perceptron
    {
    private:
    	string  description;
    
    public:
    	Perceptron();
    	~Perceptron();
    	//ostream&  operator <<(ostream& ostr, const Perceptron& x);
    
    
    	string get_Description() {}
    	virtual int* caculate() { return nullptr; }
    	virtual void  caculate(int n) {};
    	virtual void display(){}
    	virtual void set_functional_margin(const int value, const int n) {}
    	virtual int * get_functional_margin() { return nullptr; }
    	virtual Data * get_Weight_and_bias_and_step(){ return nullptr; }
    
    };
    
    Perceptron::Perceptron()
    {
    	this->description = "This is a perceptron class";
    }
    
    Perceptron::~Perceptron()
    {
    
    
    }
    

      

     Perceptron_entity.h文件

    #pragma once
    #include"Perceptron.h"
    #include"Train_data.h"
    #include"Data.h"
    #include <cstdlib>
    
    class Perceptron_entity: public  Perceptron
    {
    private:
    	 Data * Weight_and_bias_and_step;
    	 int model_value[N];
    	 int functional_margin[N];
    public:
    	 Perceptron_entity();
    	 ~Perceptron_entity();
    
    	 string get_Description();
    	 int * caculate();
    	 void display();
    	 void set_functional_margin(const int value, const int n);
    	 int * get_functional_margin();
    	 int * get_model_value();
         Data* get_Weight_and_bias_and_step();
    };
    
    
    
    inline Perceptron_entity::Perceptron_entity()
    {
        cout << "init" << endl;
    	Weight_and_bias_and_step = new Data();
    	Weight_and_bias_and_step->set_W1(0);
    	Weight_and_bias_and_step->set_W2(0);
    	Weight_and_bias_and_step->set_B(0);
    	Weight_and_bias_and_step->set_n(1);
        cout << Weight_and_bias_and_step->get_n() << endl;
    }
    
    
    Perceptron_entity::~Perceptron_entity()
    {
    	delete  Weight_and_bias_and_step;
    }
    
    
    inline string Perceptron_entity::get_Description()
    {
    	return string();
    }
    
    
    inline int* Perceptron_entity::caculate()
    {
        cout <<" model_value "<< endl;
    	Train_data *sample= Train_data::getinstance();
    	for(int i=0;i<N;i++)
    	model_value[i]=(sample->get_data())[i].get_x1()  * Weight_and_bias_and_step->get_W1() + (sample->get_data())[i].get_x2() * Weight_and_bias_and_step->get_W2() + Weight_and_bias_and_step->get_B();
    
    	//if (temp >= 0)
    	//	model_value = 1;
    	//else
    	//	model_value = -1;
    
    	return model_value;
    }
    
    
    inline void Perceptron_entity::set_functional_margin(const int value, const int n)
    {
    	this->functional_margin[n] = value;
    }
    
    inline int* Perceptron_entity::get_functional_margin()
    {
    	return functional_margin;
    }
    
    inline int * Perceptron_entity::get_model_value()
    {
    	return model_value;
    }
    
    inline Data* Perceptron_entity::get_Weight_and_bias_and_step()
    {
        return Weight_and_bias_and_step;
    }
    
    
    inline void Perceptron_entity::display()
    {
        //int j = 0;
       // Train_data* sample = Train_data::getinstance();
        cout <<" print Weight_and_bias_and_step " << endl;
    
        cout << "W1: " << Weight_and_bias_and_step->get_W1()<<endl;
        cout << "W2: " << Weight_and_bias_and_step->get_W2()<<endl;
        cout << "B: " << Weight_and_bias_and_step->get_B()<<endl;
        cout << "n: " << Weight_and_bias_and_step->get_n()<<endl;
    
    
    
        ////***python调用***//
        ////初始化python模块
        //Py_Initialize();
        //// 检查初始化是否成功  
    
        //if (!Py_IsInitialized())
        //{
        //    cout << "szzvz" << endl;
        //    Py_Finalize();
        //}
    
    
        //PyRun_SimpleString("import sys");
        ////添加Insert模块路径  
        ////PyRun_SimpleString(chdir_cmd.c_str());
        //PyRun_SimpleString("sys.path.append('./')");
        ////PyRun_SimpleString("sys.argv = ['python.py']");
        //PyObject* pModule = NULL;
        ////导入模块  
        //pModule = PyImport_ImportModule("draw");
    
        //if (!pModule)
        //{
        //    cout << "Python get module failed." << endl;
        // 
        //}
    
        //cout << "Python get module succeed." << endl;
    
        //PyObject* pFunc = NULL;
        //pFunc = PyObject_GetAttrString(pModule, "_draw");
        //PyObject* ret=PyEval_CallObject(pFunc, NULL);
    
    
    
        ////获取Insert模块内_add函数  
        //PyObject* pv = PyObject_GetAttrString(pModule, "_draw_");
        //if (!pv || !PyCallable_Check(pv))
        //{
        //    cout << "Can't find funftion (_draw_)" << endl;
        //}
        //// cout << "Get function (_draw_) succeed." << endl;
    
        //////初始化要传入的参数,args配置成传入两个参数的模式  
        //PyObject* args = PyTuple_New(2*N+3);
        //PyObject* ArgList = PyTuple_New(1);
    
    
        ////将Long型数据转换成Python可接收的类型  
    
        //for (int i=0; i < N; i++,j++)
        //{
        //    PyObject* arg1 = PyLong_FromLong((sample->get_data())[i].get_x1());
        //    PyObject* arg2 = PyLong_FromLong((sample->get_data())[i].get_x2());
        //    PyTuple_SetItem(args, j, arg1);
        //    PyTuple_SetItem(args, ++j, arg2);
        //}
    
        // PyObject* arg3 = PyLong_FromLong(Weight_and_bias_and_step->get_W1());
        // PyTuple_SetItem(args, j++, arg3);
      
        // PyObject* arg4 = PyLong_FromLong(Weight_and_bias_and_step->get_W2());
        // PyTuple_SetItem(args, j++, arg4);
    
        // PyObject* arg5 = PyLong_FromLong(Weight_and_bias_and_step->get_B());
        // PyTuple_SetItem(args, j++, arg5);
    
        // PyTuple_SetItem(ArgList, 0, args);
        ////传入参数调用函数,并获取返回值  
    
        //PyObject* pRet = PyObject_CallObject(pv, ArgList);
    
        //if (pRet)
        //{
        //    //将返回值转换成long型  
        //    long result = PyLong_AsLong(pRet);
        //    cout << "result:" << result << endl;
        //}
    
        //Py_CLEAR(pModule);
        //Py_CLEAR(pFunc);
        //Py_CLEAR(ret);
        //Py_CLEAR(pv);
        //Py_CLEAR(args);
        //Py_CLEAR(ArgList);
        //Py_CLEAR(pRet);
    
        //Py_Finalize();
    
        //system("pause");
    }
    

      

    Suan_fa.h文件

    #pragma once
    #include"Perceptron.h"
    #include"Data.h"
    
    class Suan_fa: public Perceptron
    {
    private:
    
    public:
    	Suan_fa();
    	~Suan_fa();
    };
    
    Suan_fa::Suan_fa()
    {
    }
    
    Suan_fa::~Suan_fa()
    {
    }
    

      

    Function.h文件

    #pragma once
    #include"Suan_fa.h"
    #include"Data.h"
    #include"Perceptron_entity.h"
    
    
    class Function: public Suan_fa
    {
    private:
    	Perceptron * perceptron;
    public:
    	Function(Perceptron *  entity);
    	~Function();
    
    	void  caculate(int n);
    	 void  display();
    };
    
    Function::Function(Perceptron * entity)
    {
    	this->perceptron = entity;
    }
    
    Function::~Function()
    {
    
    }
    
    inline void Function::caculate(int n)
    {
    	cout <<" print origin samples "<< endl;
    	//计算functional_margin
    	Train_data* sample = Train_data::getinstance();
    	cout << " print first sample " << endl;
    	cout <<"x1: "<<(sample->get_data())[0].get_x1() << endl;
    	cout <<"y1: "<<(sample->get_data())[0].get_x2() << endl;
    	cout << " print second sample " << endl;
    	cout <<"x2: "<<(sample->get_data())[1].get_x1() << endl;
    	cout <<"y2: "<<(sample->get_data())[1].get_x2() << endl;
    	cout << " print third sample " << endl;
    	cout <<"x3: "<<(sample->get_data())[2].get_x1() << endl;
    	cout <<"y3: "<<(sample->get_data())[2].get_x2() << endl;
    	int* array = perceptron->caculate();
    	cout <<array[0]<< endl;
    	cout <<array[1]<< endl;
    	cout <<array[2]<< endl;
    	perceptron->set_functional_margin(array[n]*(sample->get_data())[n].get_sample_signal(),n);
    
    }
    
    inline void Function::display()
    {
    	perceptron->display();
    	//cout << "this is function" << endl;
    }
    

      

    Optimize.h文件

    #pragma once
    #include"Perceptron.h"
    #include"Suan_fa.h"
    #include"Train_data.h"
    
    class Optimize:public Suan_fa
    {
    private:
    	Perceptron * perceptron;
    public:
    	Optimize(Perceptron * entity);
    	~Optimize();
    
    	void  caculate(int n);
    	void  display();
    };
    
    Optimize::Optimize(Perceptron * entity)
    {
    	this->perceptron = entity;
    }
    
    Optimize::~Optimize()
    {
    
    }
    
    inline void Optimize::caculate(int n)
    {   
    	cout <<" print functional_margin "<< endl;
    	Train_data * sample = Train_data::getinstance();
    
    
    	cout << perceptron->get_functional_margin()[0] << endl;
    	cout << perceptron->get_functional_margin()[1] << endl;
    	cout << perceptron->get_functional_margin()[2] << endl;
    
    	if (perceptron->get_functional_margin()[n] <= 0)
    	{
    	  cout <<" this time functional_margin 小于0 "<< endl<<endl;
    	 /* cout <<perceptron->get_Weight_and_bias_and_step()->get_W1()<< endl;
    	  cout <<perceptron->get_Weight_and_bias_and_step()->get_n()<< endl;
    	  cout <<(sample->get_data())[n].get_sample_signal()<< endl;
    	  cout <<(sample->get_data())[n].get_x1()<< endl;*/
    
    	   (sample->get_data())[n].set_symbol(false);
    	   perceptron->get_Weight_and_bias_and_step()->set_W1(perceptron->get_Weight_and_bias_and_step()->get_W1() + perceptron->get_Weight_and_bias_and_step()->get_n() * (sample->get_data())[n].get_sample_signal() * (sample->get_data())[n].get_x1());
    	   perceptron->get_Weight_and_bias_and_step()->set_W2(perceptron->get_Weight_and_bias_and_step()->get_W2() + perceptron->get_Weight_and_bias_and_step()->get_n() * (sample->get_data())[n].get_sample_signal() * (sample->get_data())[n].get_x2());
    	   perceptron->get_Weight_and_bias_and_step()->set_B(perceptron->get_Weight_and_bias_and_step()->get_B() + perceptron->get_Weight_and_bias_and_step()->get_n() * (sample->get_data())[n].get_sample_signal());
    	}
    	else
    	   (sample->get_data())[n].set_symbol(true);
    }
    
    
    inline void Optimize::display()
    {
    	perceptron->display();
    
    	//cout << "this is optimize" << endl;
    }
    

      

    main.cpp文件

    #include"Data.h"
    #include"Function.h"
    #include"Optimize.h"
    #include"Perceptron.h"
    #include"Perceptron_entity.h"
    #include"Suan_fa.h"
    #include"Train_data.h"
    #include<iostream>
    #include"F://python/include/Python.h"
    
    using namespace std;
    
    
    int  main()
    {
        int loop_number = 1;
        int number = 0;
        Train_data * samples = Train_data::getinstance();
        Perceptron* Entity = new Perceptron_entity();
        while (samples->judge()!=3)
        {
            cout<<"This is "<<loop_number<<" loop "<<endl;
            //Entity->display();
            Function entity(Entity);
            entity.caculate(number);
            entity.display();
            Optimize optimize(Entity);
            optimize.caculate(number);
            cout <<" print the Weight_and_bias_and_step after optimize " << endl;
            optimize.display();
    
            loop_number++;
            if (number == 2)
                number = number % 2;
            else
                number++;
        }
        
        return 0;
    }
    

      

  • 相关阅读:
    30分钟掌握ES6/ES2015核心内容[上和下], 不错的说
    根据HTML5 获取当前位置的经纬度【百度地图】【高德地图】
    vue2 入门 教程 单页应用最佳实战[*****]
    JavaScript如何比较两个数组的内容是否相同【转】
    推荐下:开源ckplayer 网页播放器, 跨平台(html5, mobile),flv, f4v, mp4, rtmp协议. webm, ogg, m3u8 !
    浅谈 Underscore.js 中 _.throttle 和 _.debounce 的差异[转]
    原生JavaScript插件开发[转]
    性能监控之Spotlight
    Jmeter(三十五)聚合报告
    Jmeter(三十四)Jmeter-Question之“Cookie获取”
  • 原文地址:https://www.cnblogs.com/liweikuan/p/14631452.html
Copyright © 2020-2023  润新知