一、创建Series #
参数#
- Series (Series)是能够保存任何类型的数据(整数,字符串,浮点数,Python对象等)的一维标记数组。轴标签统称为索引。 - data 参数 - index 索引 索引值必须是唯一的和散列的,与数据的长度相同。 默认np.arange(n)如果没有索引被传递。 - dtype 输出的数据类型 如果没有,将推断数据类型 - copy 复制数据 默认为false
数组创建#
data = ['a','b','c','d','e'] res= pd.Series(data,index=[i for i in range(1,6)],dtype=str) print(res) 1 a 2 b 3 c 4 d 5 e dtype: object
字典创建#
data = {"a":1.,"b":2,"c":3,"d":4} res = pd.Series(data,index=["d","c","b","a"]) print(res) # 字典的键用于构建索引 d 4.0 c 3.0 b 2.0 a 1.0 dtype: float64
常量创建#
# 如果数据是常量值,则必须提供索引。将重复该值以匹配索引的长度。 res = pd.Series(5,index=[1,2,3,4,5]) print(res) 1 5 2 5 3 5 4 5 5 5 dtype: int64
二、数据查询#
切片#
data = [1,2,3,4,5] res = pd.Series(data,index=["a","b","c","d","e"]) print(res[0:3],"---") # 这里跟python的切片一样 print(res[3],"---") print(res[-3:],"---") a 1 b 2 c 3 dtype: int64 --- 4 --- c 3 d 4 e 5 dtype: int64 ---
使用索引检索数据#
data = [1,2,3,4,5] res = pd.Series(data,index=["a","b","c","d","e"]) print(res["a"]) # 检索多个值 标签用中括号包裹 print(res[["a","b"]]) # 如果用没有的标签检索则会抛出异常KeyError: 'f' 1 a 1 b 2 dtype: int64
data = [1,2,3,4,5] res = pd.Series(data) res[[2,4]] 2 3 4 5 dtype: int64
使用head()/tail()查看前几个或后几个#
data = [1,2,3,4,5] res = pd.Series(data,index=["a","b","c","d","e"]) res.head(3) # 查看前三个 res.tail(2) # 查看后两个
三、其他操作#
series元素进行去重#
unique() 对series元素进行去重
s = pd.Series(data=[1,1,2,2,3,4,5,6,6,6,7,6,6,7,8]) s.unique() array([1, 2, 3, 4, 5, 6, 7, 8], dtype=int64)
两个series元素相加
#
Series之间的运算
- 在运算中自动对齐不同索引的数据
- 如果索引不对应,则补NaN
# 当索引没有对应的值时,可能出现缺失数据显示NaN(not a number)的情况 s1 = pd.Series(data=[1,2,3,4,5],index=["a","b","c","d","e"]) s2 = pd.Series(data=[1,2,3,4,5],index=["a","b","c","d","f"]) s = s1 + s2 s a 2.0 b 4.0 c 6.0 d 8.0 e NaN f NaN dtype: float64
监测缺失的数据#
isnull() # 缺失的数据返回的布尔值为True notnull() # 缺失的数据返回的布尔值为False
isnull#
s1 = pd.Series(data=[1,2,3,4,5],index=["a","b","c","d","e"]) s2 = pd.Series(data=[1,2,3,4,5],index=["a","b","c","d","f"]) s = s1 + s2 s.isnull() # 缺失的数据返回的布尔值为True a False b False c False d False e True f True dtype: bool
notnull#
s1 = pd.Series(data=[1,2,3,4,5],index=["a","b","c","d","e"]) s2 = pd.Series(data=[1,2,3,4,5],index=["a","b","c","d","f"]) s = s1 + s2 s.notnull() # 缺失的数据返回的布尔值为False a True b True c True d True e False f False dtype: bool
如果将布尔值作为Serrise的索引,则只保留True对应的元素值#
s[[True,True,False,False,True,True]] a 2.0 b 4.0 e NaN f NaN dtype: float64
根据上面的特性,可以取出所有空的数据和所有不为空的数据
s[s.isnull()] # 取所有空值 e NaN f NaN dtype: float64 s[s.notnull()] # 取出不为空的数据 a 2.0 b 4.0 c 6.0 d 8.0 dtype: float64 s.index # 取出索引 Index(['a', 'b', 'c', 'd', 'e', 'f'], dtype='object')