kafka的客户端也支持其他语言,这里主要介绍python和java的实现,这两门语言比较主流和热门
图中有四个分区,每个图形对应一个consumer,任意一对一即可
获取topic的分区数,每个分区创建一个进程消费分区中的数据。
每个进程的实例中,先要创建连接kafka的实例,然后指定连接到哪个topic(主图),哪个分区
之后要设置kafka的偏移量,kafka中每条消息都有偏移量,如果消费者突然宕机了,则可以从上个偏移量继续消费
提交偏移量的工作客户端都会默认操作,因此提交偏移量可选
后续会根据伪代码描述编写程序
GroupA和GourpB都能拿到当前topic的全部数据,组消费可以复制消费,即kafka会复制消息分别发送给组A和组B
流数N指代每个Gourp中有都少个consumer,上图中A有2个流,B有4个流
每个consumer实力也需要创建连接kafka的实例,设置连接到哪个topic和分区
也可以设置偏移量,与分区消费一样
按组消费可以选择从头消费还是从最新消费
PT代表topic T下的所有分区,CG代表Group中有多少个consumer实例
排序分区parition,排序consumer
对于前面的例子GourpA,就是PT=4,CG=2,所以N等于2
分区模式中,所有生产者也默认至少发送一次消息,但是可以自定义发送一次接受一次,或者只发送一次不管是否接收
kafka版本与服务器一致即可
pom文件如下
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd"> <modelVersion>4.0.0</modelVersion> <groupId>com.jike.kafkatest</groupId> <artifactId>JikeKafka</artifactId> <version>1.0</version> <packaging>jar</packaging> <name>JikeKafka</name> <url>http://maven.apache.org</url> <properties> <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding> </properties> <dependencies> <dependency> <groupId>junit</groupId> <artifactId>junit</artifactId> <version>3.8.1</version> <scope>test</scope> </dependency> <dependency> <groupId>org.apache.kafka</groupId> <artifactId>kafka_2.9.2</artifactId> <version>0.8.1.1</version> <exclusions> <exclusion> <artifactId>jmxri</artifactId> <groupId>com.sun.jmx</groupId> </exclusion> <exclusion> <artifactId>jms</artifactId> <groupId>javax.jms</groupId> </exclusion> <exclusion> <artifactId>jmxtools</artifactId> <groupId>com.sun.jdmk</groupId> </exclusion> </exclusions> </dependency> <dependency> <groupId>org.apache.avro</groupId> <artifactId>avro</artifactId> <version>1.7.3</version> </dependency> <dependency> <groupId>org.apache.avro</groupId> <artifactId>avro-ipc</artifactId> <version>1.7.3</version> </dependency> </dependencies> <build> <sourceDirectory>src/main/java</sourceDirectory> <testSourceDirectory>src/test/java</testSourceDirectory> <plugins> <!-- Bind the maven-assembly-plugin to the package phase this will create a jar file without the storm dependencies suitable for deployment to a cluster. --> <plugin> <artifactId>maven-assembly-plugin</artifactId> <configuration> <descriptorRefs> <descriptorRef>jar-with-dependencies</descriptorRef> </descriptorRefs> <archive> <manifest> <mainClass></mainClass> </manifest> </archive> </configuration> <executions> <execution> <id>make-assembly</id> <phase>package</phase> <goals> <goal>single</goal> </goals> </execution> </executions> </plugin> </plugins> </build> </project>
分组模式下Java代码如下:
package kafka.consumer.group; import kafka.consumer.ConsumerIterator; import kafka.consumer.KafkaStream; public class ConsumerTest implements Runnable { private KafkaStream m_stream; private int m_threadNumber; public ConsumerTest(KafkaStream a_stream, int a_threadNumber) { m_threadNumber = a_threadNumber; m_stream = a_stream; } public void run() { ConsumerIterator<byte[], byte[]> it = m_stream.iterator(); while (it.hasNext()){ System.out.println("Thread " + m_threadNumber + ": " + new String(it.next().message())); } System.out.println("Shutting down Thread: " + m_threadNumber); } }
package kafka.consumer.group; import kafka.consumer.ConsumerConfig; import kafka.consumer.KafkaStream; import kafka.javaapi.consumer.ConsumerConnector; import java.util.HashMap; import java.util.List; import java.util.Map; import java.util.Properties; import java.util.concurrent.ExecutorService; import java.util.concurrent.Executors; import java.util.concurrent.TimeUnit; public class GroupConsumerTest extends Thread { private final ConsumerConnector consumer; private final String topic; private ExecutorService executor; public GroupConsumerTest(String a_zookeeper, String a_groupId, String a_topic){ consumer = kafka.consumer.Consumer.createJavaConsumerConnector( createConsumerConfig(a_zookeeper, a_groupId)); this.topic = a_topic; } public void shutdown() { if (consumer != null) consumer.shutdown(); if (executor != null) executor.shutdown(); try { if (!executor.awaitTermination(Long.MAX_VALUE, TimeUnit.MILLISECONDS)) { System.out.println("Timed out waiting for consumer threads to shut down, exiting uncleanly"); } } catch (InterruptedException e) { System.out.println("Interrupted during shutdown, exiting uncleanly"); } } public void run(int a_numThreads) { Map<String, Integer> topicCountMap = new HashMap<String, Integer>(); topicCountMap.put(topic, new Integer(a_numThreads)); Map<String, List<KafkaStream<byte[], byte[]>>> consumerMap = consumer.createMessageStreams(topicCountMap); List<KafkaStream<byte[], byte[]>> streams = consumerMap.get(topic); // now launch all the threads // executor = Executors.newFixedThreadPool(a_numThreads); // now create an object to consume the messages // int threadNumber = 0; for (final KafkaStream stream : streams) { executor.submit(new ConsumerTest(stream, threadNumber)); threadNumber++; } } private static ConsumerConfig createConsumerConfig(String a_zookeeper, String a_groupId) { Properties props = new Properties(); props.put("zookeeper.connect", a_zookeeper); props.put("group.id", a_groupId); props.put("zookeeper.session.timeout.ms", "40000"); props.put("zookeeper.sync.time.ms", "2000"); props.put("auto.commit.interval.ms", "1000"); return new ConsumerConfig(props); } public static void main(String[] args) { if(args.length < 1){ System.out.println("Please assign partition number."); } String zooKeeper = "10.206.216.13:12181,10.206.212.14:12181,10.206.209.25:12181"; String groupId = "jikegrouptest"; String topic = "jiketest"; int threads = Integer.parseInt(args[0]); GroupConsumerTest example = new GroupConsumerTest(zooKeeper, groupId, topic); example.run(threads); try { Thread.sleep(Long.MAX_VALUE); } catch (InterruptedException ie) { } example.shutdown(); } }
分区模式下Java代码如下:
package kafka.consumer.partition; import kafka.api.FetchRequest; import kafka.api.FetchRequestBuilder; import kafka.api.PartitionOffsetRequestInfo; import kafka.common.ErrorMapping; import kafka.common.TopicAndPartition; import kafka.javaapi.*; import kafka.javaapi.consumer.SimpleConsumer; import kafka.message.MessageAndOffset; import java.nio.ByteBuffer; import java.util.ArrayList; import java.util.Collections; import java.util.HashMap; import java.util.List; import java.util.Map; public class PartitionConsumerTest { public static void main(String args[]) { PartitionConsumerTest example = new PartitionConsumerTest(); long maxReads = Long.MAX_VALUE; String topic = "jiketest"; if(args.length < 1){ System.out.println("Please assign partition number."); } List<String> seeds = new ArrayList<String>(); String hosts="10.206.216.13,10.206.212.14,10.206.209.25"; String[] hostArr = hosts.split(","); for(int index = 0;index < hostArr.length;index++){ seeds.add(hostArr[index].trim()); } int port = 19092; int partLen = Integer.parseInt(args[0]); for(int index=0;index < partLen;index++){ try { example.run(maxReads, topic, index/*partition*/, seeds, port); } catch (Exception e) { System.out.println("Oops:" + e); e.printStackTrace(); } } } private List<String> m_replicaBrokers = new ArrayList<String>(); public PartitionConsumerTest() { m_replicaBrokers = new ArrayList<String>(); } public void run(long a_maxReads, String a_topic, int a_partition, List<String> a_seedBrokers, int a_port) throws Exception { // find the meta data about the topic and partition we are interested in // PartitionMetadata metadata = findLeader(a_seedBrokers, a_port, a_topic, a_partition); if (metadata == null) { System.out.println("Can't find metadata for Topic and Partition. Exiting"); return; } if (metadata.leader() == null) { System.out.println("Can't find Leader for Topic and Partition. Exiting"); return; } String leadBroker = metadata.leader().host(); String clientName = "Client_" + a_topic + "_" + a_partition; SimpleConsumer consumer = new SimpleConsumer(leadBroker, a_port, 100000, 64 * 1024, clientName); long readOffset = getLastOffset(consumer,a_topic, a_partition, kafka.api.OffsetRequest.EarliestTime(), clientName); int numErrors = 0; while (a_maxReads > 0) { if (consumer == null) { consumer = new SimpleConsumer(leadBroker, a_port, 100000, 64 * 1024, clientName); } FetchRequest req = new FetchRequestBuilder() .clientId(clientName) .addFetch(a_topic, a_partition, readOffset, 100000) // Note: this fetchSize of 100000 might need to be increased if large batches are written to Kafka .build(); FetchResponse fetchResponse = consumer.fetch(req); if (fetchResponse.hasError()) { numErrors++; // Something went wrong! short code = fetchResponse.errorCode(a_topic, a_partition); System.out.println("Error fetching data from the Broker:" + leadBroker + " Reason: " + code); if (numErrors > 5) break; if (code == ErrorMapping.OffsetOutOfRangeCode()) { // We asked for an invalid offset. For simple case ask for the last element to reset readOffset = getLastOffset(consumer,a_topic, a_partition, kafka.api.OffsetRequest.LatestTime(), clientName); continue; } consumer.close(); consumer = null; leadBroker = findNewLeader(leadBroker, a_topic, a_partition, a_port); continue; } numErrors = 0; long numRead = 0; for (MessageAndOffset messageAndOffset : fetchResponse.messageSet(a_topic, a_partition)) { long currentOffset = messageAndOffset.offset(); if (currentOffset < readOffset) { System.out.println("Found an old offset: " + currentOffset + " Expecting: " + readOffset); continue; } readOffset = messageAndOffset.nextOffset(); ByteBuffer payload = messageAndOffset.message().payload(); byte[] bytes = new byte[payload.limit()]; payload.get(bytes); System.out.println(String.valueOf(messageAndOffset.offset()) + ": " + new String(bytes, "UTF-8")); numRead++; a_maxReads--; } if (numRead == 0) { try { Thread.sleep(1000); } catch (InterruptedException ie) { } } } if (consumer != null) consumer.close(); } public static long getLastOffset(SimpleConsumer consumer, String topic, int partition, long whichTime, String clientName) { TopicAndPartition topicAndPartition = new TopicAndPartition(topic, partition); Map<TopicAndPartition, PartitionOffsetRequestInfo> requestInfo = new HashMap<TopicAndPartition, PartitionOffsetRequestInfo>(); requestInfo.put(topicAndPartition, new PartitionOffsetRequestInfo(whichTime, 1)); kafka.javaapi.OffsetRequest request = new kafka.javaapi.OffsetRequest( requestInfo, kafka.api.OffsetRequest.CurrentVersion(), clientName); OffsetResponse response = consumer.getOffsetsBefore(request); if (response.hasError()) { System.out.println("Error fetching data Offset Data the Broker. Reason: " + response.errorCode(topic, partition) ); return 0; } long[] offsets = response.offsets(topic, partition); return offsets[0]; } private String findNewLeader(String a_oldLeader, String a_topic, int a_partition, int a_port) throws Exception { for (int i = 0; i < 3; i++) { boolean goToSleep = false; PartitionMetadata metadata = findLeader(m_replicaBrokers, a_port, a_topic, a_partition); if (metadata == null) { goToSleep = true; } else if (metadata.leader() == null) { goToSleep = true; } else if (a_oldLeader.equalsIgnoreCase(metadata.leader().host()) && i == 0) { // first time through if the leader hasn't changed give ZooKeeper a second to recover // second time, assume the broker did recover before failover, or it was a non-Broker issue // goToSleep = true; } else { return metadata.leader().host(); } if (goToSleep) { try { Thread.sleep(1000); } catch (InterruptedException ie) { } } } System.out.println("Unable to find new leader after Broker failure. Exiting"); throw new Exception("Unable to find new leader after Broker failure. Exiting"); } private PartitionMetadata findLeader(List<String> a_seedBrokers, int a_port, String a_topic, int a_partition) { PartitionMetadata returnMetaData = null; loop: for (String seed : a_seedBrokers) { SimpleConsumer consumer = null; try { consumer = new SimpleConsumer(seed, a_port, 100000, 64 * 1024, "leaderLookup"); List<String> topics = Collections.singletonList(a_topic); TopicMetadataRequest req = new TopicMetadataRequest(topics); kafka.javaapi.TopicMetadataResponse resp = consumer.send(req); List<TopicMetadata> metaData = resp.topicsMetadata(); for (TopicMetadata item : metaData) { for (PartitionMetadata part : item.partitionsMetadata()) { if (part.partitionId() == a_partition) { returnMetaData = part; break loop; } } } } catch (Exception e) { System.out.println("Error communicating with Broker [" + seed + "] to find Leader for [" + a_topic + ", " + a_partition + "] Reason: " + e); } finally { if (consumer != null) consumer.close(); } } if (returnMetaData != null) { m_replicaBrokers.clear(); for (kafka.cluster.Broker replica : returnMetaData.replicas()) { m_replicaBrokers.add(replica.host()); } } return returnMetaData; } }
参数调优
接下来实现生产者,能够像kafka中传递消息
生产者发送消息后会不断确认kafka集群是否收到,如果没收到就会重发,如果达到最大次数就会结束生产
异步生产的时候,消息会事先缓存在客户端,可以设置最大消息缓存数或者累计缓存时间,如果达到设置的标准,就会打包发送给kafka服务器
两种模型伪代码描述非常相似,所以用一个就能表示
先创建链接实例,之后配置负载均衡
在设置生产者参数的时候就会定义是同步还是异步
同步模型由于需要同步,所以丢失率基本为0
异步模型中,每个分区每秒可以发送50万条消息
接下来实现Java客户端程序编写:
pom文件与上述pom文件一样
同步模型代码如下:
package kafka.producer.sync; import java.util.*; import kafka.javaapi.producer.Producer; import kafka.producer.KeyedMessage; import kafka.producer.ProducerConfig; public class SyncProduce { public static void main(String[] args) { long events = Long.MAX_VALUE; Random rnd = new Random(); Properties props = new Properties(); props.put("metadata.broker.list", "10.206.216.13:19092,10.206.212.14:19092,10.206.209.25:19092"); props.put("serializer.class", "kafka.serializer.StringEncoder"); //kafka.serializer.DefaultEncoder props.put("partitioner.class", "kafka.producer.partiton.SimplePartitioner"); //kafka.producer.DefaultPartitioner: based on the hash of the key props.put("request.required.acks", "1"); //0; 绝不等确认 1: leader的一个副本收到这条消息,并发回确认 -1: leader的所有副本都收到这条消息,并发回确认 ProducerConfig config = new ProducerConfig(props); Producer<String, String> producer = new Producer<String, String>(config); for (long nEvents = 0; nEvents < events; nEvents++) { long runtime = new Date().getTime(); String ip = "192.168.2." + rnd.nextInt(255); String msg = runtime + ",www.example.com," + ip; //eventKey必须有(即使自己的分区算法不会用到这个key,也不能设为null或者""),否者自己的分区算法根本得不到调用 KeyedMessage<String, String> data = new KeyedMessage<String, String>("jiketest", ip, msg); // eventTopic, eventKey, eventBody producer.send(data); try { Thread.sleep(1000); } catch (InterruptedException ie) { } } producer.close(); } }
异步模型代码如下:
package kafka.producer.async; import java.util.*; import kafka.javaapi.producer.Producer; import kafka.producer.KeyedMessage; import kafka.producer.ProducerConfig; public class ASyncProduce { public static void main(String[] args) { long events = Long.MAX_VALUE; Random rnd = new Random(); Properties props = new Properties(); props.put("metadata.broker.list", "10.206.216.13:19092,10.206.212.14:19092,10.206.209.25:19092"); props.put("serializer.class", "kafka.serializer.StringEncoder"); //kafka.serializer.DefaultEncoder props.put("partitioner.class", "kafka.producer.partiton.SimplePartitioner"); //kafka.producer.DefaultPartitioner: based on the hash of the key //props.put("request.required.acks", "1"); props.put("producer.type", "async"); //props.put("producer.type", "1"); // 1: async 2: sync ProducerConfig config = new ProducerConfig(props); Producer<String, String> producer = new Producer<String, String>(config); for (long nEvents = 0; nEvents < events; nEvents++) { long runtime = new Date().getTime(); String ip = "192.168.2." + rnd.nextInt(255); String msg = runtime + ",www.example.com," + ip; KeyedMessage<String, String> data = new KeyedMessage<String, String>("jiketest", ip, msg); producer.send(data); try { Thread.sleep(1000); } catch (InterruptedException ie) { } } producer.close(); } }
分区算法:
package kafka.producer.partiton; import kafka.producer.Partitioner; import kafka.utils.VerifiableProperties; public class SimplePartitioner implements Partitioner { public SimplePartitioner (VerifiableProperties props) { } public int partition(Object key, int a_numPartitions) { int partition = 0; String stringKey = (String) key; int offset = stringKey.lastIndexOf('.'); if (offset > 0) { partition = Integer.parseInt( stringKey.substring(offset+1)) % a_numPartitions; } return partition; } }