• 【搬运】用ggplot2作带有误差线的折线图和柱状图


    ## Gives count, mean, standard deviation, standard error of the mean, and confidence interval (default 95%).
    ##   data: a data frame.
    ##   measurevar: the name of a column that contains the variable to be summariezed
    ##   groupvars: a vector containing names of columns that contain grouping variables
    ##   na.rm: a boolean that indicates whether to ignore NA's
    ##   conf.interval: the percent range of the confidence interval (default is 95%)
    summarySE <- function(data=NULL, measurevar, groupvars=NULL, na.rm=FALSE,
                          conf.interval=.95, .drop=TRUE) {
      library(plyr)
      
      # 计算长度
      length2 <- function (x, na.rm=FALSE) {
        if (na.rm) sum(!is.na(x))
        else       length(x)
      }
      
      # 以 groupvars 为组,计算每组的长度,均值,以及标准差
      # ddply 就是 dplyr 中的 group_by + summarise
      datac <- ddply(data, groupvars, .drop=.drop,
                     .fun = function(xx, col) {
                       c(N    = length2(xx[[col]], na.rm=na.rm),
                         mean = mean   (xx[[col]], na.rm=na.rm),
                         sd   = sd     (xx[[col]], na.rm=na.rm)
                       )
                     },
                     measurevar
      )
      
      # 重命名  
      datac <- plyr::rename(datac, c("mean" = measurevar))
      
      # 计算标准偏差
      datac$se <- datac$sd / sqrt(datac$N)  # Calculate standard error of the mean
      
      # Confidence interval multiplier for standard error
      # Calculate t-statistic for confidence interval: 
      # e.g., if conf.interval is .95, use .975 (above/below), and use df=N-1
      # 计算置信区间
      ciMult <- qt(conf.interval/2 + .5, datac$N-1)
      datac$ci <- datac$se * ciMult
      
      return(datac)
    }
    
    library(ggplot2)
    tg <- ToothGrowth
    
    tgc <- summarySE(tg, measurevar="len", groupvars=c("supp","dose"))
    tgc
    
    ggplot(tgc, aes(x=dose, y=len, colour=supp)) + 
      geom_errorbar(aes(ymin=len-se, ymax=len+se), width=.1) +
      geom_line() +
      geom_point()
    
    pd <- position_dodge(0.1) # move them .05 to the left and right
    ggplot(tgc, aes(x=dose, y=len, colour=supp, group=supp)) + 
      geom_errorbar(aes(ymin=len-se, ymax=len+se), colour="black", width=.1, position=pd) +
      geom_line(position=pd) +
      geom_point(position=pd, size=3, shape=21, fill="white") + # 21 is filled circle
      xlab("Dose (mg)") +
      ylab("Tooth length") +
      scale_colour_hue(name="Supplement type",    # Legend label, use darker colors
                       breaks=c("OJ", "VC"),
                       labels=c("Orange juice", "Ascorbic acid"),
                       l=40) +                    # Use darker colors, lightness=40
      ggtitle("The Effect of Vitamin C on\nTooth Growth in Guinea Pigs") +
      expand_limits(y=0) +                        # Expand y range
      scale_y_continuous(breaks=0:20*4) +         # Set tick every 4
      theme_bw() +
      theme(legend.justification=c(1,0),# 这一项很关键,如果没有这个参数,图例会偏移,读者可以试一试
            legend.position=c(1,0))               # Position legend in bottom right
    
    
    tgc2 <- tgc
    tgc2$dose <- factor(tgc2$dose)
    ggplot(tgc2, aes(x=dose, y=len, fill=supp)) + 
      geom_bar(position=position_dodge(), stat="identity",
               colour="black", # Use black outlines,
               size=.3) +      # Thinner lines
      geom_errorbar(aes(ymin=len-se, ymax=len+se),
                    size=.3,    # Thinner lines
                    width=.2,
                    position=position_dodge(.9)) +
      xlab("Dose (mg)") +
      ylab("Tooth length") +
      scale_fill_hue(name="Supplement type", # Legend label, use darker colors
                     breaks=c("OJ", "VC"),
                     labels=c("Orange juice", "Ascorbic acid")) +
      ggtitle("The Effect of Vitamin C on\nTooth Growth in Guinea Pigs") +
      scale_y_continuous(breaks=0:20*4) +
      theme_bw()                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                
    

    转载自ggplot2-为折线图和条形图添加误差线

    其他学习材料

    R语言可视化学习笔记之添加p-value和显著性标记

    R语言可视化学习笔记之添加p-value和显著性标记(排版更好)

  • 相关阅读:
    变量定义和声明的差别(整理)
    堆栈指针理解
    HDU 4349 Xiao Ming&#39;s Hope
    iOS 8中CLLocationManager及MKMapView showUserLocation失败的解决的方法
    Ant命令行操作
    linux awk命令详细使用方法
    mysql 修改[取消]timestamp的自动更新
    cocos2d-x 3.0游戏实例学习笔记《卡牌塔防》第六步---炮台&amp;点击炮台加入英雄&amp;英雄升级
    SendMessage、PostMessage原理
    poj 2104 K-th Number 主席树+超级详细解释
  • 原文地址:https://www.cnblogs.com/liulele/p/11121480.html
Copyright © 2020-2023  润新知