概念:
割点 :在一个无向图中,如果删除某个顶点,这个图就不再连通(任意两点之间无法相互到达),那么这个顶点就是这个图的割点。
割边(桥):在一个无向图中删除某条边后,图不再连通,那么这条边就是这个图的割边(也叫作桥)
求法:
- 割点: 一个顶点(x)是割点,当且仅当满足:
-
(x)为树根,且(x)有多于一个子树。
-
(x)不为树根,且满足(x)为(to)在搜索树中的父亲,并使得(low_{to}le dfn_x).(因为删去(x)后(to)以及(to)的子树不能到达(x)的其他子树以及祖先)
code:
#include <iostream>
#include <algorithm>
#include <cstdio>
using namespace std;
int read(){
int x = 1,a = 0;char ch = getchar();
while (ch < '0'||ch > '9'){if (ch == '-') x = -1;ch = getchar();}
while (ch >= '0'&&ch <= '9'){a = a*10+ch-'0';ch = getchar();}
return x*a;
}
const int maxn = 1e5+10;
int n,m;
struct node{
int to,next;
}ed[maxn*2];
int head[maxn*2],tot;
void add(int u,int to){
ed[++tot].to = to;
ed[tot].next = head[u];
head[u] = tot;
}
int dfn[maxn],low[maxn],flag[maxn],cnt,child;
void tarjan(int x,int fa){
dfn[x] = low[x] = ++cnt;
for (int i = head[x];i;i = ed[i].next){
int to = ed[i].to;
if (!dfn[to]){
tarjan(to,fa);
low[x] = min(low[x],low[to]);
if (low[to] >= dfn[x]&&x != fa) flag[x] = 1;
if (x == fa) child++;
}
low[x] = min(low[x],dfn[to]);
}
if (child >= 2&&x == fa) flag[x] = 1;
}
int main(){
n = read(),m = read();
for (int i = 1;i <= m;i++){
int x = read(),y = read();
add(x,y),add(y,x);
}
for (int i = 1;i <= n;i++){
if (!dfn[i]) child = 0,tarjan(i,i);
}
int tot = 0;
for (int i = 1;i <= n;i++){
if (flag[i]) tot++;
}
printf("%d
",tot);
for (int i = 1;i <= n;i++){
if (flag[i]) printf("%d ",i);
}
return 0;
}
- 割边:
-
一条无向边((x,to))是桥,满足(low_{to}>dfn_x).(因为(to)想要到达(x)的父亲必须经过((x,to))这条边,所以删去这条边图不连通)
-
实现时因为是无向图,建反边两条边都要标记上,边从(1)开始编号,正向边(x)的反向边就是(x)^(1)
code:
#include <iostream>
#include <algorithm>
#include <cstdio>
using namespace std;
int read(){
int x = 1,a = 0;char ch = getchar();
while (ch < '0'||ch > '9'){if (ch == '-') x = -1;ch = getchar();}
while (ch >= '0'&&ch <= '9'){a = a*10+ch-'0';ch = getchar();}
return x*a;
}
const int maxn = 3e6+10;
int n,m;
struct node{
int to,next;
}ed[maxn*2];
int head[maxn*2],tot = 1;
void add(int u,int to){
ed[++tot].to = to;
ed[tot].next = head[u];
head[u] = tot;
}
int dfn[maxn],low[maxn],cnt,res;
int bridge[maxn];
void tarjan(int x, int fa) {
dfn[x] = low[x] = ++cnt;
for (int i = head[x];i;i = ed[i].next) {
int to = ed[i].to;
if (!dfn[to]) {
tarjan(to, i);
low[x] = min(low[x],low[to]);
if (low[to] > dfn[x])
bridge[i] = bridge[i^1] = true;
}
else if (i != (fa^1)) low[x] = min(low[x],dfn[to]);
}
}
int main(){
n = read(),m = read();
for (int i = 1;i <= m;i++){
int u = read(),v = read();
add(u,v),add(v,u);
}
for (int i = 1;i <= n;i++){
if (!dfn[i]) tarjan(i,0);
}
int res = 0;
for (int i = 2; i < tot; i+=2)
if (bridge[i]) res++;
printf("%d
",res);
return 0;
}