• codeforces Beautiful Numbers


    来源:http://codeforces.com/problemset/problem/1265/B
     
    B. Beautiful Numbers
     

    You are given a permutation p=[p1,p2,,pn]p=[p1,p2,…,pn] of integers from 11 to nn . Let's call the number mm (1mn1≤m≤n ) beautiful, if there exists two indices l,rl,r (1lrn1≤l≤r≤n ), such that the numbers [pl,pl+1,,pr][pl,pl+1,…,pr] is a permutation of numbers 1,2,,m1,2,…,m .

    For example, let p=[4,5,1,3,2,6]p=[4,5,1,3,2,6] . In this case, the numbers 1,3,5,61,3,5,6 are beautiful and 2,42,4 are not. It is because:

    • if l=3l=3 and r=3r=3 we will have a permutation [1][1] for m=1m=1 ;
    • if l=3l=3 and r=5r=5 we will have a permutation [1,3,2][1,3,2] for m=3m=3 ;
    • if l=1l=1 and r=5r=5 we will have a permutation [4,5,1,3,2][4,5,1,3,2] for m=5m=5 ;
    • if l=1l=1 and r=6r=6 we will have a permutation [4,5,1,3,2,6][4,5,1,3,2,6] for m=6m=6 ;
    • it is impossible to take some ll and rr , such that [pl,pl+1,,pr][pl,pl+1,…,pr] is a permutation of numbers 1,2,,m1,2,…,m for m=2m=2 and for m=4m=4 .

    You are given a permutation p=[p1,p2,,pn]p=[p1,p2,…,pn] . For all mm (1mn1≤m≤n ) determine if it is a beautiful number or not.

    Input

    The first line contains the only integer tt (1t10001≤t≤1000 )  — the number of test cases in the input. The next lines contain the description of test cases.

    The first line of a test case contains a number nn (1n21051≤n≤2⋅105 ) — the length of the given permutation pp . The next line contains nn integers p1,p2,,pnp1,p2,…,pn (1pin1≤pi≤n , all pipi are different) — the given permutation pp .

    It is guaranteed, that the sum of nn from all test cases in the input doesn't exceed 21052⋅105 .

    Output

    Print tt lines — the answers to test cases in the order they are given in the input.

    The answer to a test case is the string of length nn , there the ii -th character is equal to 11 if ii is a beautiful number and is equal to 00 if ii is not a beautiful number.

    Example
    Input
    Copy
    3
    6
    4 5 1 3 2 6
    5
    5 3 1 2 4
    4
    1 4 3 2
    
    Output
    Copy
    101011
    11111
    1001
    
    Note

    The first test case is described in the problem statement.

    In the second test case all numbers from 11 to 55 are beautiful:

    • if l=3l=3 and r=3r=3 we will have a permutation [1][1] for m=1m=1 ;
    • if l=3l=3 and r=4r=4 we will have a permutation [1,2][1,2] for m=2m=2 ;
    • if l=2l=2 and r=4r=4 we will have a permutation [3,1,2][3,1,2] for m=3m=3 ;
    • if l=2l=2 and r=5r=5 we will have a permutation [3,1,2,4][3,1,2,4] for m=4m=4 ;
    • if l=1l=1 and r=5r=5 we will have a permutation [5,3,1,2,4][5,3,1,2,4] for m=5m=5 . 

     解题思路:记录每个值的位置,从1开始让最小的区间包围1-i,如果区间长度正好等于i就说明是一个i的排列。

    #pragma GCC optimize(2)
    #include<bits/stdc++.h>
    using namespace std;
    inline int read() {int x=0,f=1;char c=getchar();while(c!='-'&&(c<'0'||c>'9'))c=getchar();if(c=='-')f=-1,c=getchar();while(c>='0'&&c<='9')x=x*10+c-'0',c=getchar();return f*x;}
    typedef unsigned long long ll;
    const int maxn = 1e6+10;
    int a[maxn];
    int main()
    {
        int t;
        cin>>t;
        while(t--){
            int n;
            cin>>n;
            int k;
            for(int i=1;i<=n;i++){
                cin>>k;
                a[k]=i;
            }
            int l,r;
            l=r=a[1];
            cout<<1;
            for(int i=2;i<=n;i++){
                l=min(l,a[i]);
                r=max(r,a[i]);
                if(r-l+1==i){
                    cout<<1; 
                }
                else{
                    cout<<0;
                }
            }
            cout<<endl;
        }
        return 0;
    }
  • 相关阅读:
    数值拓展与函数拓展
    正则小记
    Struts2(三)配置详解
    Struts2(二)工作原理
    Struts2(一)基本配置
    Eclipse新建动态web工程项目出现红叉解决方案
    Spring系列之AOP
    Java动态代理的实现机制
    Spring系列之装配Bean
    Spring系列之基本配置
  • 原文地址:https://www.cnblogs.com/lipu123/p/12142233.html
Copyright © 2020-2023  润新知