• 矩阵快速幂小记


    介绍

    使用快速幂来加速矩阵的幂运算。常用来求n很大时递推式$$f(n) = k_1 cdot f(n-1)+k_2 cdot f(n-2)... k_i cdot f(n - i)$$的值

    实现和证明

    由于矩阵(A)自乘满足交换律,也满足结合律,所以在计算(A^m)时不用担心左乘和右乘的问题,直接套快速幂的模板即可。

    如何加速计算递推式(f(n))?以递推式(f(n)=f(n-1)-2f(n-2)+3f(n-3))为例。我们先把系数提出来,然后由矩阵的乘法可以知道

    [f(n)=left( egin {array}{cc} 1 & -2 & 3end{array} ight) cdot left( egin {array}{cc} f(n-1) \ f(n-2) \ f(n-3)end{array} ight) ]

    这样就得到了f(n)。然后为了可以持续计算(f(n+1),f(n+2)...),通过利用矩阵乘法,我们把(f(n-1),f(n-2))(f(n))组合起来。

    [left( egin {array}{cc} f(n) \ f(n-1) \ f(n-2)end{array} ight)=left( egin {array}{cc} 1 & -2 & 3 \ 1 & 0 & 0 \ 0 & 1 & 0end{array} ight) cdot left( egin {array}{cc} f(n-1) \ f(n-2) \ f(n-3)end{array} ight) ]

    就可以得到

    [left( egin {array}{cc} f(n) \ f(n-1) \ f(n-2)end{array} ight)=left( egin {array}{cc} 1 & -2 & 3 \ 1 & 0 & 0 \ 0 & 1 & 0end{array} ight) ^{n-3} cdot left( egin {array}{cc} f(3) \ f(2) \ f(1)end{array} ight) ]

    这样就可以用矩阵快速幂愉快地求f(n)啦。

    例题

    HDU6185 - Covering
    CF1117D - Magic Gems

  • 相关阅读:
    五、nginx 配置实例-负载均衡
    四、nginx配置实例-反向代理
    三、nginx配置文件
    二、Nginx 安装
    十二、rpm包的管理
    十一、进程管理
    十、Linux磁盘分区、挂载
    九、定时任务调度
    八、组管理和权限管理
    七、实用指令
  • 原文地址:https://www.cnblogs.com/limil/p/12820395.html
Copyright © 2020-2023  润新知