• SpringCloud--Ribbon--源码解析--IRule实现


      在SpringCloud--Ribbon--源码解析--IloadBalancer&ServerListUpdater&ServerListFilter实现说到ILoadBalance的实现时提到,获取到可用的服务列表之后,需要使用IRule从实例清单中挑选一个实例进行访问,IRule接口源码及实现类关系图如下所示:

    public interface IRule{
        public Server choose(Object key);
        
        public void setLoadBalancer(ILoadBalancer lb);
        
        public ILoadBalancer getLoadBalancer();    
    }

       接下来,就一一看下这十个实现类

    1、AbstractLoadBalancerRule

      AbstractLoadBalancerRule类是负载均衡策略IRule的抽象实现类,在该抽象类中定义了负载均衡器ILoadBalancer对象,该对象能够在具体实现选择服务策略时,获取到一些负载均衡器中维护的信息来作为分配依据,并依次设计一些算法来针对特定场景的高级策略。

    public abstract class AbstractLoadBalancerRule implements IRule, IClientConfigAware {
    
        private ILoadBalancer lb;
            
        @Override
        public void setLoadBalancer(ILoadBalancer lb){
            this.lb = lb;
        }
        
        @Override
        public ILoadBalancer getLoadBalancer(){
            return lb;
        }      
    }

    2、RandomRule

      该策略实现了从服务实例清单中随机选择一个服务实例的功能。从下面的源码可以看到,该实现类的choose方法传入了一个负载均衡器,并且使用负载均衡器获取对应的可用服务列表和全部服务列表,并通过chooseRandomInt方法获取一个随机数,该随机数作为可用服务列表的索引来获取具体的实例。这里有个问题,选择服务实例时使用的是while获取,正常情况下,每次选择都应该能选择一个实例进行返回,但是如果出现异常导致每一次都获取步到可用的实例,那么如果出现死循环而获取不到服务实例时,则很有可能存在并发的BUG。

        public Server choose(ILoadBalancer lb, Object key) {
            if (lb == null) {
                return null;
            }
            Server server = null;
    
            while (server == null) {
                if (Thread.interrupted()) {
                    return null;
                }
                List<Server> upList = lb.getReachableServers();
                List<Server> allList = lb.getAllServers();
    
                int serverCount = allList.size();
                if (serverCount == 0) {
                    /*
                     * No servers. End regardless of pass, because subsequent passes
                     * only get more restrictive.
                     */
                    return null;
                }
    
                int index = chooseRandomInt(serverCount);
                server = upList.get(index);
    
                if (server == null) {
                    /*
                     * The only time this should happen is if the server list were
                     * somehow trimmed. This is a transient condition. Retry after
                     * yielding.
                     */
                    Thread.yield();
                    continue;
                }
    
                if (server.isAlive()) {
                    return (server);
                }
    
                // Shouldn't actually happen.. but must be transient or a bug.
                server = null;
                Thread.yield();
            }
    
            return server;
    
        }

      3、RoundRobinRule

      该策略实现了按照轮询的方式依次选择每个服务实例的功能。该实现和上述的RandomRule类似,只是获取逻辑不同,该负载均衡策略实现逻辑是直接获取下一个可用实例,如果超过10次没有获取到可用的实例,则返回空且打印异常信息。

        public Server choose(ILoadBalancer lb, Object key) {
            if (lb == null) {
                log.warn("no load balancer");
                return null;
            }
    
            Server server = null;
            int count = 0;
            while (server == null && count++ < 10) {
                List<Server> reachableServers = lb.getReachableServers();
                List<Server> allServers = lb.getAllServers();
                int upCount = reachableServers.size();
                int serverCount = allServers.size();
    
                if ((upCount == 0) || (serverCount == 0)) {
                    log.warn("No up servers available from load balancer: " + lb);
                    return null;
                }
    
                int nextServerIndex = incrementAndGetModulo(serverCount);
                server = allServers.get(nextServerIndex);
    
                if (server == null) {
                    /* Transient. */
                    Thread.yield();
                    continue;
                }
    
                if (server.isAlive() && (server.isReadyToServe())) {
                    return (server);
                }
    
                // Next.
                server = null;
            }
    
            if (count >= 10) {
                log.warn("No available alive servers after 10 tries from load balancer: "
                        + lb);
            }
            return server;
        }

      4、RetryRule

      该策略实现了一个具备重试机制的实力选择功能。重下述源码可以看出,其选择服务实例使用的是轮询选择策略RoundRobinRule,然后在获取不到服务实例的情况下,则反复尝试获取,直到调用时间超过设置的阈值,则返回空。

        IRule subRule = new RoundRobinRule();
        long maxRetryMillis = 500;
    
    public Server choose(ILoadBalancer lb, Object key) {
            long requestTime = System.currentTimeMillis();
            long deadline = requestTime + maxRetryMillis;
    
            Server answer = null;
    
            answer = subRule.choose(key);
    
            if (((answer == null) || (!answer.isAlive()))
                    && (System.currentTimeMillis() < deadline)) {
    
                InterruptTask task = new InterruptTask(deadline
                        - System.currentTimeMillis());
    
                while (!Thread.interrupted()) {
                    answer = subRule.choose(key);
    
                    if (((answer == null) || (!answer.isAlive()))
                            && (System.currentTimeMillis() < deadline)) {
                        /* pause and retry hoping it's transient */
                        Thread.yield();
                    } else {
                        break;
                    }
                }
    
                task.cancel();
            }
    
            if ((answer == null) || (!answer.isAlive())) {
                return null;
            } else {
                return answer;
            }
        }

      5、WeightedResponseTimeRule

      该策略继承自RoundRobinRule,增加了根据实例的运行情况来计算权重,并根据权重来挑选实例,以达到更优的分配效果,其核心内容分为三块:定时任务、权重计算、实例选择

    (1)定时任务

        @Override
        public void setLoadBalancer(ILoadBalancer lb) {
            super.setLoadBalancer(lb);
            if (lb instanceof BaseLoadBalancer) {
                name = ((BaseLoadBalancer) lb).getName();
            }
            initialize(lb);
        }
    
        public static final int DEFAULT_TIMER_INTERVAL = 30 * 1000;
        
        private int serverWeightTaskTimerInterval = DEFAULT_TIMER_INTERVAL;
    
        void initialize(ILoadBalancer lb) {        
            if (serverWeightTimer != null) {
                serverWeightTimer.cancel();
            }
            serverWeightTimer = new Timer("NFLoadBalancer-serverWeightTimer-"
                    + name, true);
            serverWeightTimer.schedule(new DynamicServerWeightTask(), 0,
                    serverWeightTaskTimerInterval);
            // do a initial run
            ServerWeight sw = new ServerWeight();
            sw.maintainWeights();
    
            Runtime.getRuntime().addShutdownHook(new Thread(new Runnable() {
                public void run() {
                    logger
                            .info("Stopping NFLoadBalancer-serverWeightTimer-"
                                    + name);
                    serverWeightTimer.cancel();
                }
            }));
        }
    
        class DynamicServerWeightTask extends TimerTask {
            public void run() {
                ServerWeight serverWeight = new ServerWeight();
                try {
                    serverWeight.maintainWeights();
                } catch (Exception e) {
                    logger.error("Error running DynamicServerWeightTask for {}", name, e);
                }
            }
        }

      从上述源码可见,在设置负载均衡策略对应的负载均衡器时,调用了initialize方法,而该方法创建了一个定时任务来计算权重(最终调用的serverWeight.maintainWeights()方法),每30秒执行一次。

    (2)权重计算

        private volatile List<Double> accumulatedWeights = new ArrayList<Double>();
    
        class ServerWeight {
    
            public void maintainWeights() {
                ILoadBalancer lb = getLoadBalancer();
                if (lb == null) {
                    return;
                }
                
                if (!serverWeightAssignmentInProgress.compareAndSet(false,  true))  {
                    return; 
                }
                
                try {
                    logger.info("Weight adjusting job started");
                    AbstractLoadBalancer nlb = (AbstractLoadBalancer) lb;
                    LoadBalancerStats stats = nlb.getLoadBalancerStats();
                    if (stats == null) {
                        // no statistics, nothing to do
                        return;
                    }
                    double totalResponseTime = 0;
                    // find maximal 95% response time
                    for (Server server : nlb.getAllServers()) {
                        // this will automatically load the stats if not in cache
                        ServerStats ss = stats.getSingleServerStat(server);
                        totalResponseTime += ss.getResponseTimeAvg();
                    }
                    // weight for each server is (sum of responseTime of all servers - responseTime)
                    // so that the longer the response time, the less the weight and the less likely to be chosen
                    Double weightSoFar = 0.0;
                    
                    // create new list and hot swap the reference
                    List<Double> finalWeights = new ArrayList<Double>();
                    for (Server server : nlb.getAllServers()) {
                        ServerStats ss = stats.getSingleServerStat(server);
                        double weight = totalResponseTime - ss.getResponseTimeAvg();
                        weightSoFar += weight;
                        finalWeights.add(weightSoFar);   
                    }
                    setWeights(finalWeights);
                } catch (Exception e) {
                    logger.error("Error calculating server weights", e);
                } finally {
                    serverWeightAssignmentInProgress.set(false);
                }
    
            }
        }
    
        void setWeights(List<Double> weights) {
            this.accumulatedWeights = weights;
        }

      通过源码可见,代码中维护一个用于存储权重的List集合accumulatedWeights,同时,通过maintainWeights方法做了权重计算,该计算主要分为两步,第一步,根据LoadBalancerStatus中记录的每个实例的统计信息,累加所有实例的平均响应时间,得到总的响应时间totalResponseTime;第二步,为负载均衡器中维护的实例清单逐个计算权重(从第一个开始),计算规则为weightSoFar+totalResponseTime-实例的平均响应时间,其中weightSoFar的初始值为0。

      举个例子,如果有ABCD4个实例,他们的平均响应时间是10、40、80、100,那么总的相应时间就是230,那么计算出4个实例的权重分别为:

        A:230-10 = 220

        B:220+(230-40) = 410

        C:410+(230-80) = 560

        D:560+(230-100) = 690

      权重区间是左开右闭,但是第一个和最后一个比较特殊,由于在后续选择实例时会用随机数从区间中获取,但是随机数最小值可以是0,但是不会到达随机数的最大值,因此第一个左边的0是闭区间,而最后一个的右侧是开区间,因此这4个实例对应的权重区间即为:

        A:[0,220]

        B:(220,410]

        C:(410,560]

        D:(560,690)

      不难发现,区间的宽度就是总的平均响应时间-实例的平均响应时间,因此实例的平均响应时间越短,那么权重的区间就越大,那么被选中的几率就越大。

      (3)实例选择

        public Server choose(ILoadBalancer lb, Object key) {
            if (lb == null) {
                return null;
            }
            Server server = null;
    
            while (server == null) {
                // get hold of the current reference in case it is changed from the other thread
                List<Double> currentWeights = accumulatedWeights;
                if (Thread.interrupted()) {
                    return null;
                }
                List<Server> allList = lb.getAllServers();
    
                int serverCount = allList.size();
    
                if (serverCount == 0) {
                    return null;
                }
    
                int serverIndex = 0;
    
                // last one in the list is the sum of all weights
                double maxTotalWeight = currentWeights.size() == 0 ? 0 : currentWeights.get(currentWeights.size() - 1); 
                // No server has been hit yet and total weight is not initialized
                // fallback to use round robin
                if (maxTotalWeight < 0.001d || serverCount != currentWeights.size()) {
                    server =  super.choose(getLoadBalancer(), key);
                    if(server == null) {
                        return server;
                    }
                } else {
                    // generate a random weight between 0 (inclusive) to maxTotalWeight (exclusive)
                    double randomWeight = random.nextDouble() * maxTotalWeight;
                    // pick the server index based on the randomIndex
                    int n = 0;
                    for (Double d : currentWeights) {
                        if (d >= randomWeight) {
                            serverIndex = n;
                            break;
                        } else {
                            n++;
                        }
                    }
    
                    server = allList.get(serverIndex);
                }
    
                if (server == null) {
                    /* Transient. */
                    Thread.yield();
                    continue;
                }
    
                if (server.isAlive()) {
                    return (server);
                }
    
                // Next.
                server = null;
            }
            return server;
        }

      通过上述源码可见,其首先生成了一个   [0,最大权重值) 区间内的随机数,然后循环权重区间,如果该随机数在权限区间内,则就拿当前权重列表的索引去服务实例获取对应的服务。还是以上面的ABCD四个实例来说明,那么随机数就是从  [0,690)  的区间中获取,如果获取的随机数数230,那么该随机数在实例B的权重区间内,因此就会选择B实例。

      6、ClientConfigEnabledRoundRobinRule

      该策略比较特殊,一般不会使用它。因为它本身没有什么特殊的处理逻辑,正如下面源码所示,该策略在内部定义了一个RoundRobinRule策略,而choose函数调用的就是RoundRobinRule的choose函数。该类主要的作用就是通过继承该类,在子类中做一些其他的策略时,如果条件不满足,则会使用父类的策略。

    public class ClientConfigEnabledRoundRobinRule extends AbstractLoadBalancerRule {
    
        RoundRobinRule roundRobinRule = new RoundRobinRule();
    
        @Override
        public void initWithNiwsConfig(IClientConfig clientConfig) {
            roundRobinRule = new RoundRobinRule();
        }
    
        @Override
        public void setLoadBalancer(ILoadBalancer lb) {
            super.setLoadBalancer(lb);
            roundRobinRule.setLoadBalancer(lb);
        }
        
        @Override
        public Server choose(Object key) {
            if (roundRobinRule != null) {
                return roundRobinRule.choose(key);
            } else {
                throw new IllegalArgumentException(
                        "This class has not been initialized with the RoundRobinRule class");
            }
        }
    
    }

      7、BestAvailableRule

      该策略会选出负载最低的实例。

       BestAvailableRule继承自ClientConfigEnabledRoundRobinRule,从choose方法看,会循环所有Server实例,过滤掉故障实例并选出负载最低的Server。同时我们可以发现,如果没有选择到Server的话,就会调用父类的choose方法,那么就会使用到上面说的 “通过继承该类,在子类中做一些其他的策略时,如果条件不满足,则会使用父类的策略” 。

    public class BestAvailableRule extends ClientConfigEnabledRoundRobinRule {
    
        private LoadBalancerStats loadBalancerStats;
        
        @Override
        public Server choose(Object key) {
            if (loadBalancerStats == null) {
                return super.choose(key);
            }
            List<Server> serverList = getLoadBalancer().getAllServers();
            int minimalConcurrentConnections = Integer.MAX_VALUE;
            long currentTime = System.currentTimeMillis();
            Server chosen = null;
            for (Server server: serverList) {
                ServerStats serverStats = loadBalancerStats.getSingleServerStat(server);
                if (!serverStats.isCircuitBreakerTripped(currentTime)) {
                    int concurrentConnections = serverStats.getActiveRequestsCount(currentTime);
                    if (concurrentConnections < minimalConcurrentConnections) {
                        minimalConcurrentConnections = concurrentConnections;
                        chosen = server;
                    }
                }
            }
            if (chosen == null) {
                return super.choose(key);
            } else {
                return chosen;
            }
        }
    
        @Override
        public void setLoadBalancer(ILoadBalancer lb) {
            super.setLoadBalancer(lb);
            if (lb instanceof AbstractLoadBalancer) {
                loadBalancerStats = ((AbstractLoadBalancer) lb).getLoadBalancerStats();            
            }
        }
        
    }

      8、PredicateBasedRule

      该策略实现了先通过子类获取一部分实例,然后通过线性轮询的方式从该部分实例中获取一个实例。

    public abstract class PredicateBasedRule extends ClientConfigEnabledRoundRobinRule {
       
        public abstract AbstractServerPredicate getPredicate();     
    
        @Override
        public Server choose(Object key) {
            ILoadBalancer lb = getLoadBalancer();
            Optional<Server> server = getPredicate().chooseRoundRobinAfterFiltering(lb.getAllServers(), key);
            if (server.isPresent()) {
                return server.get();
            } else {
                return null;
            }       
        }
    }

      PredicateBasedRule继承自ClientConfigEnabledRoundRobinRule,是一个抽象类,它首先使用getPredicate方法获取一个AbstractServerPredicate的实现。而choose方法则是调用AbstractServerPredicate类的chooseRoundRobinAfterFiltering方法获取对应的Server实例并返回。

        public Optional<Server> chooseRoundRobinAfterFiltering(List<Server> servers, Object loadBalancerKey) {
            List<Server> eligible = getEligibleServers(servers, loadBalancerKey);
            if (eligible.size() == 0) {
                return Optional.absent();
            }
            return Optional.of(eligible.get(incrementAndGetModulo(eligible.size())));
        }
    
        public List<Server> getEligibleServers(List<Server> servers, Object loadBalancerKey) {
            if (loadBalancerKey == null) {
                return ImmutableList.copyOf(Iterables.filter(servers, this.getServerOnlyPredicate()));            
            } else {
                List<Server> results = Lists.newArrayList();
                for (Server server: servers) {
                    if (this.apply(new PredicateKey(loadBalancerKey, server))) {
                        results.add(server);
                    }
                }
                return results;            
            }
        }
    
        private int incrementAndGetModulo(int modulo) {
            for (;;) {
                int current = nextIndex.get();
                int next = (current + 1) % modulo;
                if (nextIndex.compareAndSet(current, next) && current < modulo)
                    return current;
            }
        }

      通过chooseRoundRobinAfterFiltering方法可以看到,其先是调用getEligibleServers方法获取了一部分实例,然后又调用了eligible.get(incrementAndGetModulo(eligible.size()))方法从该部分实例中动态获取了一个Server。其中getEligibleServers方法是根据this.apply(new PredicateKey(loadBalancerKey, server))进行过滤的,如果满足,就添加到返回的集合中,而apply方法,在AbstractServerPredicate中并不存在,因此需要子类实现;而incrementAndGetModulo方法则是直接返回了下一个整数(索引值),通过该索引值从返回的实例列表中取得Server实例。

    9、AvailabilityFilteringRule

      该策略实现了轮询获取Server并校验Server状态的功能。

    public class AvailabilityFilteringRule extends PredicateBasedRule {    
    
        private AbstractServerPredicate predicate;
        
        public AvailabilityFilteringRule() {
            super();
            predicate = CompositePredicate.withPredicate(new AvailabilityPredicate(this, null))
                    .addFallbackPredicate(AbstractServerPredicate.alwaysTrue())
                    .build();
        }
        
        
        @Override
        public void initWithNiwsConfig(IClientConfig clientConfig) {
            predicate = CompositePredicate.withPredicate(new AvailabilityPredicate(this, clientConfig))
                        .addFallbackPredicate(AbstractServerPredicate.alwaysTrue())
                        .build();
        }
    
        @Override
        public Server choose(Object key) {
            int count = 0;
            Server server = roundRobinRule.choose(key);
            while (count++ <= 10) {
                if (predicate.apply(new PredicateKey(server))) {
                    return server;
                }
                server = roundRobinRule.choose(key);
            }
            return super.choose(key);
        }
    
        @Override
        public AbstractServerPredicate getPredicate() {
            return predicate;
        }
    }

      AvailabilityFilteringRule继承自PredicateBasedRule,从其choose方法可见,其并没有完全使用父类的实现方式,而是先轮询获取一个Server,然后判断该Server是否满足需要,如果满足,直接返回;如果不满足,就继续获取下一个Server,如果一直轮询10次还没有符合要求的Server,那么再使用父类的实现方式(先获取所有满足需求的Server列表,然后从该Server列表中轮询获取一个Server对象)

      同时从AvailabilityFilteringRule构造函数中可以看到,AvailabilityFilteringRule使用的是AvailabilityPredicate,根据上面讲述的PredicateBasedRule,其必须要实现apply方法,从下述源码可见,apply方法主要是通过shouldSkipServer方法进行判断的,在该方法中,有两个判断维度:是否故障(断路器是否断开)、实例的并发请求数是否大于阈值(int的最大值)

         private static final DynamicBooleanProperty CIRCUIT_BREAKER_FILTERING =
                DynamicPropertyFactory.getInstance().getBooleanProperty("niws.loadbalancer.availabilityFilteringRule.filterCircuitTripped", true);
    
        private static final DynamicIntProperty ACTIVE_CONNECTIONS_LIMIT =
                DynamicPropertyFactory.getInstance().getIntProperty("niws.loadbalancer.availabilityFilteringRule.activeConnectionsLimit", Integer.MAX_VALUE);
    
        private ChainedDynamicProperty.IntProperty activeConnectionsLimit = new ChainedDynamicProperty.IntProperty(ACTIVE_CONNECTIONS_LIMIT);
    
       @Override
        public boolean apply(@Nullable PredicateKey input) {
            LoadBalancerStats stats = getLBStats();
            if (stats == null) {
                return true;
            }
            return !shouldSkipServer(stats.getSingleServerStat(input.getServer()));
        }
        
        
        private boolean shouldSkipServer(ServerStats stats) {        
            if ((CIRCUIT_BREAKER_FILTERING.get() && stats.isCircuitBreakerTripped()) 
                    || stats.getActiveRequestsCount() >= activeConnectionsLimit.get()) {
                return true;
            }
            return false;
        }

    10、ZoneAvoidanceRule

      ZoneAvoidanceRule同样继承自PredicateBasedRule,同时ZoneAvoidanceRule中没有choose方法,说明完全复用了父类中的策略(先过滤所有可用的实例,然后使用轮询从满足需要的实例清单中获取一个Server)。同时通过ZoneAvoidanceRule的构造函数可见,使用的是CompositePredicate进行的过滤,CompositePredicate的构造函数传入了两个AbstractServerPredicate的子类,分别是主过滤条件ZoneAvoidancePredicate和次过滤条件AvailabilityPredicate(其实次过滤条件可以传入多个)

        public ZoneAvoidanceRule() {
            super();
            ZoneAvoidancePredicate zonePredicate = new ZoneAvoidancePredicate(this);
            AvailabilityPredicate availabilityPredicate = new AvailabilityPredicate(this);
            compositePredicate = createCompositePredicate(zonePredicate, availabilityPredicate);
        }
        
        private CompositePredicate createCompositePredicate(ZoneAvoidancePredicate p1, AvailabilityPredicate p2) {
            return CompositePredicate.withPredicates(p1, p2)
                                 .addFallbackPredicate(p2)
                                 .addFallbackPredicate(AbstractServerPredicate.alwaysTrue())
                                 .build();
            
        }

      首先可以看下CompositePredicate的构造函数相关,可以看到,上一步在创建CompositePredicate对象时:

        首先调用了withPredicates方法,该方法调用了Builder(primaryPredicates),最后调用了Builder(AbstractServerPredicate ...primaryPredicates)方法,在该方法中,将第一个过滤对象(ZoneAvoidancePredicate)赋值给delegate属性;

        其次又调用了addFallbackPredicate方法,在该方法中,将第二个过滤对象(AvailabilityPredicate)赋值给了fallbacks属性

        private AbstractServerPredicate delegate;
        
        private List<AbstractServerPredicate> fallbacks = Lists.newArrayList();
            
        private int minimalFilteredServers = 1;
        
        private float minimalFilteredPercentage = 0;    
        
        public static class Builder {
            
            private CompositePredicate toBuild;
            
            Builder(AbstractServerPredicate primaryPredicate) {
                toBuild = new CompositePredicate();    
                toBuild.delegate = primaryPredicate;                    
            }
    
            Builder(AbstractServerPredicate ...primaryPredicates) {
                toBuild = new CompositePredicate();
                Predicate<PredicateKey> chain = Predicates.<PredicateKey>and(primaryPredicates);
                toBuild.delegate =  AbstractServerPredicate.ofKeyPredicate(chain);                
            }
    
            public Builder addFallbackPredicate(AbstractServerPredicate fallback) {
                toBuild.fallbacks.add(fallback);
                return this;
            }
                    
            public Builder setFallbackThresholdAsMinimalFilteredNumberOfServers(int number) {
                toBuild.minimalFilteredServers = number;
                return this;
            }
            
            public Builder setFallbackThresholdAsMinimalFilteredPercentage(float percent) {
                toBuild.minimalFilteredPercentage = percent;
                return this;
            }
            
            public CompositePredicate build() {
                return toBuild;
            }
        }
        
        public static Builder withPredicates(AbstractServerPredicate ...primaryPredicates) {
            return new Builder(primaryPredicates);
        }
    
        public static Builder withPredicate(AbstractServerPredicate primaryPredicate) {
            return new Builder(primaryPredicate);
        }

      然后可以看到CompositePredicate重写了父类中的getEligibleServers方法,因此,在获取满足条件Server集合时,就会调用CompositePredicate中的getEligibleServers方法,在该方法中,首先调用super.getEligibleServers(servers, loadBalancerKey),那么就会调用到CompositePredicate实现的apply方法,通过源码可以看到,这里直接调用了delegate.apply(input),也就是直接使用了主过滤类ZoneAvoidancePredicate的apply方法,获取到可用的服务列表后,在依次调用次过滤类(次过滤类可以是多个,CompositePredicate里只有一个AvailabilityPredicate)的getEligibleServers方法进行过滤。

      CompositePredicate的总体处理逻辑如下:

        (1)使用主过滤类对所有实例过滤并返回过滤后的清单

        (2)依次使用次过滤类对已筛选出的清单进行再次过滤

        (3)每次过滤之后,判断如果满足下面两个条件的话,就不再过滤:

            过滤后的实例总数 >= 最小过滤实例数(默认值为1)

            过滤后的实例比例  >  最小过滤百分比(默认值为0)

      主过滤类ZoneAvoidancePredicate的apply方法在讲述SpringCloud--Ribbon--源码解析--IloadBalancer&ServerListUpdater&ServerListFilter实现的ZoneAwareLoadBalancer过滤器的时候,已经解析过源码,这里就不再赘述。

        @Override
        public boolean apply(@Nullable PredicateKey input) {
            return delegate.apply(input);
        }
    
        @Override
        public List<Server> getEligibleServers(List<Server> servers, Object loadBalancerKey) {
            List<Server> result = super.getEligibleServers(servers, loadBalancerKey);
            Iterator<AbstractServerPredicate> i = fallbacks.iterator();
            while (!(result.size() >= minimalFilteredServers && result.size() > (int) (servers.size() * minimalFilteredPercentage))
                    && i.hasNext()) {
                AbstractServerPredicate predicate = i.next();
                result = predicate.getEligibleServers(servers, loadBalancerKey);
            }
            return result;
        }
  • 相关阅读:
    flutter 和 NTFS
    APIO2020 游记
    CF1336F Journey
    ZJOI2020 游记
    CF568E Longest Increasing Subsequence
    CSP2020 游记
    洛谷 P6217 简单数论题
    CF587F Duff is Mad
    CF526G Spiders Evil Plan
    WC2021 游记
  • 原文地址:https://www.cnblogs.com/liconglong/p/13290038.html
Copyright © 2020-2023  润新知