下面是大数据学习的基本经典书籍,有兴趣的同仁可以买来翻翻
1. 深入浅出数据分析
这书挺简单的,基本的内容都涉及了,说得也比较清楚,最后谈到了R是大加分。
难易程度:非常易。
2.啤酒与尿布
通过案例来说事情,而且是最经典的例子。
难易程度:非常易。
3.数据之美
一本介绍性的书籍,每章都解决一个具体的问题,甚至还有代码,对理解数据分析的应用领域和做法非常有帮助。
难易程度:易。
4.集体智慧编程
学习数据分析、数据挖掘、机器学习人员应该仔细阅读的第一本书。作者通过实际例子介绍了机器学习和数据挖掘中的算法,浅显易懂,还有可执行的Python代码。
难易程度:中。
5.Machine Learning in Action
用人话把复杂难懂的机器学习算法解释清楚了,其中有零星的数学公式,但是是以解释清楚为目的的。而且有Python代码,大赞!目前中科院的王斌老师(微博: @王斌_ICTIR)已经翻译这本书了 机器学习实战 (豆瓣)。这本书本身质量就很高,王老师的翻译质量也很高。
难易程度:中。
6.推荐系统实践
这本书不用说了,研究推荐系统必须要读的书,而且是第一本要读的书。
难易程度:中上。
7.数据挖掘导论
最近几年数据挖掘教材中比较好的一本书,被美国诸多大学的数据挖掘课作为教材,没有推荐Jiawei Han老师的那本书,因为个人觉得那本书对于初学者来说不太容易读懂。
难易程度:中上。
8.The Elements of Statistical Learning
这本书有对应的中文版:统计学习基础 (豆瓣)。书中配有R包,非常赞!可以参照着代码学习算法。
难易程度:难。
9.统计学习方法
李航老师的扛鼎之作,强烈推荐。
难易程度:难。
10.Pattern Recognition And Machine Learning
经典中的经典。
11.Machine Learning
去年出版的新书,作者Kevin Murrphy教授是机器学习领域中年少有为的代表。这书是他的集大成之作,写完之后,就去Google了,产学研结合,没有比这个更好的了。
12.Bayesian Reasoning and Machine Learning
看名字就知道了,彻彻底底的Bayesian学派的书,里面的内容非常多,有一张图将机器学习中设计算法的关系总结了一下,很棒。
13.Machine Learning for Hackers
也是通过实例讲解机器学习算法,用R实现的,可以一边学习机器学习一边学习R。
14.Probabilistic Graphical Models
鸿篇巨制,这书谁要是读完了告诉我一声。
15.Convex Optimization
凸优化中最好的教材,没有之一了。课程也非常棒,Stephen老师拿着纸一步一步推到,图一点一点画,太棒了。
16.Graphical Models, Exponential Families, and Variational Inference
这个是Jordan老爷子和他的得意门徒 Martin J Wainwright 在 Foundation of Machine Learning Research上的创刊号,可以免费下载,比较难懂,但是一旦读通了,graphical model的相关内容就可以踏平了。
17.Introduction to Semi-Supervised Learning
半监督学习必读必看的书。
18.Learning to Rank for Information Retrieval
微软亚院刘铁岩老师关于LTR的著作,啥都不说了,推荐!
19.Learning to Rank for Information Retrieval and Natural Language Processing
李航老师关于LTR的书,也是当时他在微软亚院时候的书,可见微软亚院对LTR的研究之深,贡献之大。
20.SciPy and NumPy
这本书可以归类为数据分析书吧,因为numpy和scipy真的是非常强大啊。
21.Python for Data Analysis
作者是Pandas这个包的作者,看过他在Scipy会议上的演讲,实例非常强,用pandas做数据分析!
22.Bad Data Handbook
很好玩的书,作者的角度很不同。