• Light OJ 1005


    版权声明:本文作者靖心。靖空间地址:http://blog.csdn.net/kenden23/,未经本作者同意不得转载。 https://blog.csdn.net/kenden23/article/details/31760795

    A rook is a piece used in the game of chess which is played on a board of square grids. A rook can only move vertically or horizontally from its current position and two rooks attack each other if one is on the path of the other. In the following figure, the dark squares represent the reachable locations for rook R1 from its current position. The figure also shows that the rook R1 and R2 are in attacking positions where R1 and R3 are not. R2 and R3 are also in non-attacking positions.

    Now, given two numbers n and k, your job is to determine the number of ways one can put k rooks on an n x n chessboard so that no two of them are in attacking positions.

    Input

    Input starts with an integer T (≤ 350), denoting the number of test cases.

    Each case contains two integers n (1 ≤ n ≤ 30) and k (0 ≤ k ≤ n2).

    Output

    For each case, print the case number and total number of ways one can put the given number of rooks on a chessboard of the given size so that no two of them are in attacking positions. You may safely assume that this number will be less than 1017.

    Sample Input

    Output for Sample Input

    8

    1 1

    2 1

    3 1

    4 1

    4 2

    4 3

    4 4

    4 5

    Case 1: 1

    Case 2: 4

    Case 3: 9

    Case 4: 16

    Case 5: 72

    Case 6: 96

    Case 7: 24

    Case 8: 0



    本题有点像n-queen的问题的变形,只是和n-queen有本质的不同,由于简化了对角线,那么就能够使用数学的方法求解了。

    思考了我好久,最终发现这个是inclusion-exclusion原理的应用。

    1 当k等于0的时候为1。 当k等于1的时候,那么就等于n^2

    2 能够这样选择的:先选择n^2中的一格,那么就剩下(n-1)^2格能够选择了,然后在选一格。那么又剩下(n-2)^2格选择了

    3 这样能够利用乘法原理得到f(n, k) = f(n^2, 1) * f((n-1)^2, 1) * f((n-2)^2, 1)...*f((n-k+1)^2, 1);

    4 相当于分别在n, n-1, n-2... (n-k+1)个方格中分别选择一格。

    5 可是这样选择有反复。由于选择出来的数不须要排序,那么就把其排序的方法的次数除去,这是依据除法原理计算法

    6 最终得到:f(n, k) = f(n^2, 1) * f((n-1)^2, 1) * f((n-2)^2, 1)...*f((n-k+1)^2, 1) / P(k); P(k)是k个数的全排序

    比如求f(4, 3) = f(4, 1) * f(3, 1) * f (2,, 1) / 3!;

    f(4, 4) = f(4, 1), *f(3, 1), *f(2, 1) / 4!;

    由于f(3, 3) = f(3, 1) * f (2, 1) / 3!;

    所以能够化简:f(4, 4) = f(3, 3) * f(4, 1) / 4; 最后就利用这个公式,加上动态规划法,能够先计算出一个表,然后直接查表得到答案,速度奇快。

    #pragma once
    #include <stdio.h>
    #include <vector>
    using namespace std;
    
    class Rooks1005
    {
    	const static int SIZE = 31;
    	vector<vector<long long> > tbl;
    
    	void genTbl()
    	{
    		for (int i = 1; i < SIZE; i++)
    		{
    			tbl[i][0] = 1;
    			tbl[i][1] = i * i;
    		}
    
    		for (int i = 2; i < SIZE; i++)
    		{
    			for (int j = 2; j <= i; j++)
    			{
    				tbl[i][j] = tbl[i][1] * tbl[i-1][j-1] / j;
    			}
    		}
    	}
    public:
    	Rooks1005():tbl(SIZE, vector<long long>(SIZE))
    	{
    		genTbl();
    
    		int T, n, k;
    		scanf("%d", &T);
    		for (int i = 1; i <= T; i++)
    		{
    			scanf("%d %d", &n, &k);
    			if (k > n) printf("Case %d: %d
    ", i, 0);
    			else printf("Case %d: %lld
    ", i, tbl[n][k]);
    		}
    	}
    };




  • 相关阅读:
    python全栈开发day54-mysql库操作、表操作、数据类型、完整性约束
    CentOS7.5安装nodejs 转
    python全栈开发day53-mysql
    python全栈开发day52-bootstrap的运用
    python全栈开发day51-jquery插件、@media媒体查询、移动端单位、Bootstrap框架
    机器学习之交叉验证和网格搜索
    机器学习之混淆矩阵
    机器学习之朴素贝叶斯算法
    机器学习之TF-IDF
    机器学习之K-近邻算法
  • 原文地址:https://www.cnblogs.com/ldxsuanfa/p/10040752.html
Copyright © 2020-2023  润新知