• ThreadPoolExecutor机制探索-我们到底能走多远系列(41)


    我们到底能走多远系列(41)

    扯淡:

      这一年过的不匆忙,也颇多感受,成长的路上难免弯路,这个世界上没人关心你有没有变强,只有自己时刻提醒自己,不要忘记最初出发的原因。

      其实这个世界上比我们聪明的人无数,很多人都比我们努力,当我门奇怪为什么他们可以如此轻松的时候,是不会问他们付出过什么。怨天尤人是无用的,使自己变好,哪怕是变好一点点,我觉得生活着就是有意义的。

      未来,太远。唯有不停的积累,不要着急,抓得住的才能叫机会。

      羊年,一定要不做被动的人。大家加油!

    目录留白:

       * ArrayBlockingQueue

    主题:

    直接进ThreadPoolExecutor源码看一看:(版本是1.7.0)
    首先,这个线程池的状态是怎么样的呢?
    我们看下面的字段定义,ctl作为ThreadPoolExecutor的核心状态控制字段,包含来两个信息:
         1,工作线程总数  workerCount
         2,线程池状态 RUNNING SHUTDOWN STOP TIDYING TERMINATED
    下面代码解释一下:
         COUNT_BITS 是32减去3 就是29,下面的线程池状态就是-1 到 3 分别向左移动29位。
         如此,int的右侧29位,代表着线程数量,总数可以达到2的29次,29位后的3位代表线程池的状态
    这样,线程池增加一个线程,只需吧ctl加1即可,而我们也发现实际这个线程池的最高线程数量是2的29次减1。并不是先前我们现象的2的32次减1。这个作者在注释中也提到了,说如果后续需要增大这个值, 可以吧ctl定义成AtomicLong。
     
    这个关键的控制字段的理解,对阅读源码很有帮助。
        private final AtomicInteger ctl = new AtomicInteger(ctlOf(RUNNING, 0));
        private static final int COUNT_BITS = Integer.SIZE - 3;
        private static final int CAPACITY  = (1 << COUNT_BITS) - 1;
    
        // runState is stored in the high-order bits
        private static final int RUNNING    = -1 << COUNT_BITS;// 111 00000000000000000000000000000
        private static final int SHUTDOWN  =  0 << COUNT_BITS;// 000 00000000000000000000000000000
        private static final int STOP      =  1 << COUNT_BITS;// 001 00000000000000000000000000000
        private static final int TIDYING    =  2 << COUNT_BITS;// 010 00000000000000000000000000000
        private static final int TERMINATED =  3 << COUNT_BITS;// 100 00000000000000000000000000000
    
        // Packing and unpacking ctl
        private static int runStateOf(int c)     { return c & ~CAPACITY; }//最高3位
        private static int workerCountOf(int c)  { return c & CAPACITY; }//后29位
        private static int ctlOf(int rs, int wc) { return rs | wc; }

    代码里我们可能会这样使用ThreadPoolExecutor的方法

    Future<?> future = this.threadPoolExecutor.submit(runnable);

    那么就从submit方法入手,这个submit的代码在 AbstractExecutorService,因为 ThreadPoolExecutor继承了它。

        public Future<?> submit(Runnable task) {
            if (task == null) throw new NullPointerException();
            RunnableFuture<Void> ftask = newTaskFor(task, null);
            execute(ftask);
            return ftask;
        }
    把task包装成RunnableFuture,然后执行execute,下面是ThreadPoolExecutor的execute方法:
    这个方法就是我们把任务提交给线程池去完成,至于线程池按照怎样的一个管理机制来完成这个task我们不关心,task关系的是run方法中的逻辑。
    如此,对于开发来说是极其方便的,配置一个线程池,只需一句代码,然后专心完成task的逻辑。
    那么,了解这个线程池的机制,我感觉只需要看下这个execute方法大概也明白了。特别是方法中的注释。
         1,当一个task被安排进来的时候,再确定不是空值后,直接判断在池中已经有工作的线程是否小于corePoolSize,小于则增加一个线程来负责这个task。
         2,如果池中已经工作的线程大于等于corePoolSize,就向队列里存task,而不是继续增加线程。
         3,当workQueue.offer失败时,也就是说task不能再向队列里放的时候,而此时工作线程大于等于corePoolSize,那么新进的task,就要新开一个线程来接待了。
    根据代码分析诸多判断和逻辑,而对于使用这个线程池的外部来说,机制是这样:
         a、如果正在运行的线程数 < corePoolSize,那就马上创建线程并运行这个任务,而不会进行排队。
         b、如果正在运行的线程数 >= corePoolSize,那就把这个任务放入队列。
         c、如果队列满了,并且正在运行的线程数 < maximumPoolSize,那么还是要创建线程并运行这个任务。
         d、如果队列满了,并且正在运行的线程数 >= maximumPoolSize,那么线程池就会调用handler里方法。(采用LinkedBlockingDeque就不会出现队列满情况)
    /**
         * Executes the given task sometime in the future.  The task
         * may execute in a new thread or in an existing pooled thread.
         *
         * If the task cannot be submitted for execution, either because this
         * executor has been shutdown or because its capacity has been reached,
         * the task is handled by the current {@code RejectedExecutionHandler}.
         *
         * @param command the task to execute
         * @throws RejectedExecutionException at discretion of
         *         {@code RejectedExecutionHandler}, if the task
         *         cannot be accepted for execution
         * @throws NullPointerException if {@code command} is null
         */
        public void execute(Runnable command) {
            if (command == null)
                throw new NullPointerException();
            /*
             * Proceed in 3 steps:
             *
             * 1. If fewer than corePoolSize threads are running, try to
             * start a new thread with the given command as its first
             * task.  The call to addWorker atomically checks runState and
             * workerCount, and so prevents false alarms that would add
             * threads when it shouldn't, by returning false.
             *
             * 2. If a task can be successfully queued, then we still need
             * to double-check whether we should have added a thread
             * (because existing ones died since last checking) or that
             * the pool shut down since entry into this method. So we
             * recheck state and if necessary roll back the enqueuing if
             * stopped, or start a new thread if there are none.
             *
             * 3. If we cannot queue task, then we try to add a new
             * thread.  If it fails, we know we are shut down or saturated
             * and so reject the task.
             */
            int c = ctl.get();
            if (workerCountOf(c) < corePoolSize) {
                if (addWorker(command, true))
                    return;
                c = ctl.get();
            }
            if (isRunning(c) && workQueue.offer(command)) {
                int recheck = ctl.get();
                if (! isRunning(recheck) && remove(command))
                    reject(command);
                else if (workerCountOf(recheck) == 0)
                    addWorker(null, false);
            }
            else if (!addWorker(command, false))
                reject(command);
        }
    单从execute方法,大概能了解整个线程池的工作机制。
    那么,全局的观看以下,我们一定明白这个ThreadPoolExecutor维护着一个池:
        /**
         * Set containing all worker threads in pool. Accessed only when
         * holding mainLock.
         */
        private final HashSet<Worker> workers = new HashSet<Worker>();
    猜测execute方法中的addWorker应该是向这个set中add一个worker,而这里面的worker里有一个线程,这个线程执行完成时,就会从这个set中remove掉。
    看一下开进程开始工作的addWorker方法:
      /*
         * Methods for creating, running and cleaning up after workers
         */
        /**
         * Checks if a new worker can be added with respect to current
         * pool state and the given bound (either core or maximum). If so,
         * the worker count is adjusted accordingly, and, if possible, a
         * new worker is created and started, running firstTask as its
         * first task. This method returns false if the pool is stopped or
         * eligible to shut down. It also returns false if the thread
         * factory fails to create a thread when asked.  If the thread
         * creation fails, either due to the thread factory returning
         * null, or due to an exception (typically OutOfMemoryError in
         * Thread#start), we roll back cleanly.
         *
         * @param firstTask the task the new thread should run first (or
         * null if none). Workers are created with an initial first task
         * (in method execute()) to bypass queuing when there are fewer
         * than corePoolSize threads (in which case we always start one),
         * or when the queue is full (in which case we must bypass queue).
         * Initially idle threads are usually created via
         * prestartCoreThread or to replace other dying workers.
         *
         * @param core if true use corePoolSize as bound, else
         * maximumPoolSize. (A boolean indicator is used here rather than a
         * value to ensure reads of fresh values after checking other pool
         * state).
         * @return true if successful
         */
        private boolean addWorker(Runnable firstTask, boolean core) {
            retry:
            for (;;) {
                int c = ctl.get();
                int rs = runStateOf(c);
    
                // Check if queue empty only if necessary.
                if (rs >= SHUTDOWN &&
                    ! (rs == SHUTDOWN &&
                       firstTask == null &&
                       ! workQueue.isEmpty()))
                    return false;
    
                for (;;) {
                    int wc = workerCountOf(c);
                    if (wc >= CAPACITY ||
                        wc >= (core ? corePoolSize : maximumPoolSize))
                        return false;
                    if (compareAndIncrementWorkerCount(c))
                        break retry;
                    c = ctl.get();  // Re-read ctl
                    if (runStateOf(c) != rs)
                        continue retry;
                    // else CAS failed due to workerCount change; retry inner loop
                }
            }
    
            boolean workerStarted = false;
            boolean workerAdded = false;
            Worker w = null;
            try {
                final ReentrantLock mainLock = this.mainLock;
                w = new Worker(firstTask);
                final Thread t = w.thread;
                if (t != null) {
                    mainLock.lock();
                    try {
                        // Recheck while holding lock.
                        // Back out on ThreadFactory failure or if
                        // shut down before lock acquired.
                        int c = ctl.get();
                        int rs = runStateOf(c);
    
                        if (rs < SHUTDOWN ||
                            (rs == SHUTDOWN && firstTask == null)) {
                            if (t.isAlive()) // precheck that t is startable
                                throw new IllegalThreadStateException();
                            workers.add(w);
                            int s = workers.size();
                            if (s > largestPoolSize)
                                largestPoolSize = s;
                            workerAdded = true;
                        }
                    } finally {
                        mainLock.unlock();
                    }
                    if (workerAdded) {
                        t.start();
                        workerStarted = true;
                    }
                }
            } finally {
                if (! workerStarted)
                    addWorkerFailed(w);
            }
            return workerStarted;
        }
    View Code

    方法前面的retry循环,最终break的时候,执行compareAndIncrementWorkerCount(c),是的,最前面提到的ctl加1啦!这里利用CAS原则,可以参考先前的文章:摸我

        /**
         * Attempt to CAS-increment the workerCount field of ctl.
         */
        private boolean compareAndIncrementWorkerCount(int expect) {
            return ctl.compareAndSet(expect, expect + 1);
        }
    retry循环break之后,就是做核心的事,new一个worker出来然后add进set,然后启动worker里的thread。  
    我们注意到做把worker放入set这个操作前,先获取了锁,这个mainLock是类静态成员变量,是一个公用的可重入锁:
        /**
         * Lock held on access to workers set and related bookkeeping.
         * While we could use a concurrent set of some sort, it turns out
         * to be generally preferable to use a lock. Among the reasons is
         * that this serializes interruptIdleWorkers, which avoids
         * unnecessary interrupt storms, especially during shutdown.
         * Otherwise exiting threads would concurrently interrupt those
         * that have not yet interrupted. It also simplifies some of the
         * associated statistics bookkeeping of largestPoolSize etc. We
         * also hold mainLock on shutdown and shutdownNow, for the sake of
         * ensuring workers set is stable while separately checking
         * permission to interrupt and actually interrupting.
         */
        private final ReentrantLock mainLock = new ReentrantLock();
    其实调用这个 addWorker方法有4种传参的方式:
      1, addWorker(command, true);
      2, addWorker(command, false);
      3, addWorker(null, false);
      4, addWorker(null, true);
    在execute方法中就使用了前3种,结合这个核心方法我们先进行一下分析。
         第一个:线程数小于corePoolSize时,放一个需要处理的task进worker set。如果worker set长度超过corePoolSize,就返回false。
       第二个:当队列被放满时,就尝试将这个新来的task直接放入worker set,而此时worker set 的长度限制是maximumPoolSize。如果线程池也满了的话就返回false。
       第三个:放入一个空的task进set,比较的的长度限制是maximumPoolSize。这样一个task为空的worker在线程执行的时候会判断出后去任务队列里拿任务,这样就相当于世创建了一个新的线程,只是没有马上分配任务。
         第四个:这个方法就是放一个null的task进set,而且是在小于corePoolSize时。实际使用中是在 prestartCoreThread() 方法。这个方法用来为线程池先启动一个worker等待在那边,如果此时set中的数量已经达到corePoolSize那就返回false,什么也不干。还有是 prestartAllCoreThreads() 方法,准备corePoolSize个worker:
       /**
         * Starts all core threads, causing them to idly wait for work. This
         * overrides the default policy of starting core threads only when
         * new tasks are executed.
         *
         * @return the number of threads started
         */
        public int prestartAllCoreThreads() {
            int n = 0;
            while (addWorker(null, true))
                ++n;
            return n;
        }
    在addWorker中 t.start() 使线程就绪,thread是怎么来的,就看下Worker的代码
    Worker类的源码:
    /**
         * Class Worker mainly maintains interrupt control state for
         * threads running tasks, along with other minor bookkeeping.
         * This class opportunistically extends AbstractQueuedSynchronizer
         * to simplify acquiring and releasing a lock surrounding each
         * task execution.  This protects against interrupts that are
         * intended to wake up a worker thread waiting for a task from
         * instead interrupting a task being run.  We implement a simple
         * non-reentrant mutual exclusion lock rather than use
         * ReentrantLock because we do not want worker tasks to be able to
         * reacquire the lock when they invoke pool control methods like
         * setCorePoolSize.  Additionally, to suppress interrupts until
         * the thread actually starts running tasks, we initialize lock
         * state to a negative value, and clear it upon start (in
         * runWorker).
         */
        private final class Worker
            extends AbstractQueuedSynchronizer
            implements Runnable
        {
            /**
             * This class will never be serialized, but we provide a
             * serialVersionUID to suppress a javac warning.
             */
            private static final long serialVersionUID = 6138294804551838833L;
            /** Thread this worker is running in.  Null if factory fails. */
            final Thread thread;
            /** Initial task to run.  Possibly null. */
            Runnable firstTask;
            /** Per-thread task counter */
            volatile long completedTasks;
            /**
             * Creates with given first task and thread from ThreadFactory.
             * @param firstTask the first task (null if none)
             */
            Worker(Runnable firstTask) {
                setState(-1); // inhibit interrupts until runWorker
                this.firstTask = firstTask;
                this.thread = getThreadFactory().newThread(this);
            }
    
            /** Delegates main run loop to outer runWorker  */
            public void run() {
                runWorker(this);
            }
            // Lock methods
            //
            // The value 0 represents the unlocked state.
            // The value 1 represents the locked state.
            protected boolean isHeldExclusively() {
                return getState() != 0;
            }
    
            protected boolean tryAcquire(int unused) {
                if (compareAndSetState(0, 1)) {
                    setExclusiveOwnerThread(Thread.currentThread());
                    return true;
                }
                return false;
            }
    
            protected boolean tryRelease(int unused) {
                setExclusiveOwnerThread(null);
                setState(0);
                return true;
            }
    
            public void lock()        { acquire(1); }
            public boolean tryLock()  { return tryAcquire(1); }
            public void unlock()      { release(1); }
            public boolean isLocked() { return isHeldExclusively(); }
    
            void interruptIfStarted() {
                Thread t;
                if (getState() >= 0 && (t = thread) != null && !t.isInterrupted()) {
                    try {
                        t.interrupt();
                    } catch (SecurityException ignore) {
                    }
                }
            }
        }
    View Code
    线程启动后就会调用run方法,也就是调用runWorker(Worker w),核心代码了,英文注释十分详细。
    在执行task之前会先执行beforeExecute,task结束后执行afterExecute,pool的扩展性利用:摸我
    /**
         * Main worker run loop.  Repeatedly gets tasks from queue and
         * executes them, while coping with a number of issues:
         *
         * 1. We may start out with an initial task, in which case we
         * don't need to get the first one. Otherwise, as long as pool is
         * running, we get tasks from getTask. If it returns null then the
         * worker exits due to changed pool state or configuration
         * parameters.  Other exits result from exception throws in
         * external code, in which case completedAbruptly holds, which
         * usually leads processWorkerExit to replace this thread.
         *
         * 2. Before running any task, the lock is acquired to prevent
         * other pool interrupts while the task is executing, and
         * clearInterruptsForTaskRun called to ensure that unless pool is
         * stopping, this thread does not have its interrupt set.
         *
         * 3. Each task run is preceded by a call to beforeExecute, which
         * might throw an exception, in which case we cause thread to die
         * (breaking loop with completedAbruptly true) without processing
         * the task.
         *
         * 4. Assuming beforeExecute completes normally, we run the task,
         * gathering any of its thrown exceptions to send to
         * afterExecute. We separately handle RuntimeException, Error
         * (both of which the specs guarantee that we trap) and arbitrary
         * Throwables.  Because we cannot rethrow Throwables within
         * Runnable.run, we wrap them within Errors on the way out (to the
         * thread's UncaughtExceptionHandler).  Any thrown exception also
         * conservatively causes thread to die.
         *
         * 5. After task.run completes, we call afterExecute, which may
         * also throw an exception, which will also cause thread to
         * die. According to JLS Sec 14.20, this exception is the one that
         * will be in effect even if task.run throws.
         *
         * The net effect of the exception mechanics is that afterExecute
         * and the thread's UncaughtExceptionHandler have as accurate
         * information as we can provide about any problems encountered by
         * user code.
         *
         * @param w the worker
         */
        final void runWorker(Worker w) {
            Thread wt = Thread.currentThread();
            Runnable task = w.firstTask;
            w.firstTask = null;
            w.unlock(); // allow interrupts
            boolean completedAbruptly = true;
            try {
                while (task != null || (task = getTask()) != null) {
                    w.lock();
                    // If pool is stopping, ensure thread is interrupted;
                    // if not, ensure thread is not interrupted.  This
                    // requires a recheck in second case to deal with
                    // shutdownNow race while clearing interrupt
                    if ((runStateAtLeast(ctl.get(), STOP) ||
                         (Thread.interrupted() &&
                          runStateAtLeast(ctl.get(), STOP))) &&
                        !wt.isInterrupted())
                        wt.interrupt();
                    try {
                        beforeExecute(wt, task);
                        Throwable thrown = null;
                        try {
                            task.run();
                        } catch (RuntimeException x) {
                            thrown = x; throw x;
                        } catch (Error x) {
                            thrown = x; throw x;
                        } catch (Throwable x) {
                            thrown = x; throw new Error(x);
                        } finally {
                            afterExecute(task, thrown);
                        }
                    } finally {
                        task = null;
                        w.completedTasks++;
                        w.unlock();
                    }
                }
                completedAbruptly = false;
            } finally {
                processWorkerExit(w, completedAbruptly);
            }
        }
    View Code

    while循环条件:先取worker自己的task,如果没有,就是上面提到addWorker时task放null的那种,就调用getTask方法。

     /**
         * Performs blocking or timed wait for a task, depending on
         * current configuration settings, or returns null if this worker
         * must exit because of any of:
         * 1. There are more than maximumPoolSize workers (due to
         *    a call to setMaximumPoolSize).
         * 2. The pool is stopped.
         * 3. The pool is shutdown and the queue is empty.
         * 4. This worker timed out waiting for a task, and timed-out
         *    workers are subject to termination (that is,
         *    {@code allowCoreThreadTimeOut || workerCount > corePoolSize})
         *    both before and after the timed wait.
         *
         * @return task, or null if the worker must exit, in which case
         *         workerCount is decremented
         */
        private Runnable getTask() {
            boolean timedOut = false; // Did the last poll() time out?
    
            retry:
            for (;;) {
                int c = ctl.get();
                int rs = runStateOf(c);
    
                // Check if queue empty only if necessary.
                if (rs >= SHUTDOWN && (rs >= STOP || workQueue.isEmpty())) {
                    decrementWorkerCount();
                    return null;
                }
    
                boolean timed;      // Are workers subject to culling?
    
                for (;;) {
                    int wc = workerCountOf(c);
                    timed = allowCoreThreadTimeOut || wc > corePoolSize;//如果线程池允许线程  timeout或者当前线程数大于核心线程数,则会进行timeout的处理
    
                    if (wc <= maximumPoolSize && ! (timedOut && timed))//如果线程小于最大值,也不需要timeout判断的,就直接退出
                        break;
                    if (compareAndDecrementWorkerCount(c))//削减线程
                        return null;
                    c = ctl.get();  // Re-read ctl
                    if (runStateOf(c) != rs)//状态再判断是否变化,发生变化需要重新再来
                        continue retry;
                    // else CAS failed due to workerCount change; retry inner loop
                }
    
                try {
                   //keepAliveTime来控制获取queue中元素时的等待时间
                    Runnable r = timed ?
                        workQueue.poll(keepAliveTime, TimeUnit.NANOSECONDS) :
                        workQueue.take();
                    if (r != null)
                        return r;
                    timedOut = true;
                } catch (InterruptedException retry) {
                    timedOut = false;
                }
            }
        }

    至此基本了解了ThreadPoolExecutor源码。在使用是也会更明了一些。

    让我们继续前行

    ----------------------------------------------------------------------

    努力不一定成功,但不努力肯定不会成功。

  • 相关阅读:
    HTML5新媒体元素
    概述
    (一)最小可行化应用
    JSON
    ajax的工作原理
    R语言学习笔记(四)
    R语言学习笔记(一)
    转:禅道的数据库结构
    转:bug的分类和等级
    转:如何定义 Bug 的优先级
  • 原文地址:https://www.cnblogs.com/killbug/p/4287166.html
Copyright © 2020-2023  润新知