思路:
1. dp[k][x][y] 表示处理到第 k 个时间区间时,最终点落在 x, y 坐标上,移动的最大距离。
3. dp[k][x][y] = max(dp[k-1][x1][y1] + delta); 由于 delta 是相对偏移量,所以对于 x/y 所在的维度可以用单调队列优化。
4. 由于第 k - 1 次之后,无法确定第 k 步的起始位置,所以要采取枚举的办法,所以最终的时间复杂度为 O(N*M*K)
5. 初始状态为 dp[0][x][y] = 0, 其他赋值为 -INFS,这样才能保证枚举的过程中,最终结果是在以 (x, y) 为起始点出发的。
#include <iostream>
#include <cstdio>
#include <algorithm>
using
namespace
std;
const
int
MAXN = 210;
const
int
INFS = 0x3fffffff;
int
dx[5] = {-1, 1, 0, 0};
int
dy[5] = {0, 0, -1, 1};
char
grid[MAXN][MAXN];
int
t1, t2, dp[2][MAXN][MAXN], deq[MAXN], pos[MAXN];
void
solvedp(
int
x,
int
y,
int
width,
int
size,
int
d)
{
int
s = 0, e = -1;
for
(
int
i = 1; i <= width; ++i)
{
if
(grid[x][y] ==
'.'
)
{
int
val = dp[t1][x][y] - i;
while
(s <= e && deq[e] < val)
--e;
deq[++e] = val, pos[e] = i;
while
(i - pos[s] > size)
++s;
dp[t2][x][y] = deq[s] + i;
}
else
{
s = 0, e = -1;
dp[t2][x][y] = -INFS;
}
x += dx[d], y += dy[d];
}
}
int
main()
{
int
N, M, x, y, K;
while
(
scanf
(
"%d %d %d %d %d"
, &N, &M, &x, &y, &K) != EOF)
{
for
(
int
i = 1; i <= N; ++i)
scanf
(
"%s"
, &grid[i][1]);
for
(
int
i = 1; i <= N; ++i)
for
(
int
j = 1; j <= M; ++j)
dp[0][i][j] = -INFS;
dp[0][x][y] = 0;
t1 = 1, t2 = 0;
for
(
int
i = 0; i < K; ++i)
{
int
si, ti, di;
scanf
(
"%d %d %d"
, &si, &ti, &di);
t1 ^= 1, t2 ^= 1;
if
(di == 1)
{
for
(
int
j = 1; j <= M; ++j)
solvedp(N, j, N, ti - si + 1, di - 1);
}
else
if
(di == 2)
{
for
(
int
j = 1; j <= M; ++j)
solvedp(1, j, N, ti - si + 1, di - 1);
}
else
if
(di == 3)
{
for
(
int
j = 1; j <= N; ++j)
solvedp(j, M, M, ti - si + 1, di - 1);
}
else
if
(di == 4)
{
for
(
int
j = 1; j <= N; ++j)
solvedp(j, 1, M, ti - si + 1, di - 1);
}
}
int
ans = 0;
for
(
int
i = 1; i <= N; ++i)
for
(
int
j = 1; j <= M; ++j)
ans = max(ans, dp[t2][i][j]);
printf
(
"%d\n"
, ans);
}
return
0;
}