• Project Euler欧拉计划


    1

    If we list all the natural numbers below 10 that are multiples of 3 or 5, we get 3, 5, 6 and 9. The sum of these multiples is 23.
    Find the sum of all the multiples of 3 or 5 below 1000.

    answer = sum $ takeWhile (< 1000) [ n | n <- [ 1 .. 999 ],
                                            mod n 3 == 0 || mod n 5 == 0
                                      ]
    

    2

    Each new term in the Fibonacci sequence is generated by adding the previous two terms. By starting with 1 and 2, the first 10 terms will be:

    1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ...

    By considering the terms in the Fibonacci sequence whose values do not exceed four million, find the sum of the even-valued terms.

    answer = sum $ filter even $ takeWhile (<= 4000000) $ map fst $
                                                                   iterate ( (a,b) -> (b, a+b))
                                                                           (1, 2)
    

    3

    The prime factors of 13195 are 5, 7, 13 and 29.
    What is the largest prime factor of the number 600851475143 ?

    answer = maximum $ fact 600851475143
        where
            -- Get the factors of N, not sorted
            fact n = factors n 2
                where
                    -- Get the factors of N
                    -- p <= (the next factor of n),  p <- Z+
                    factors n p | n == 1     = [1]
                                | n  > 1     = if    mod n p == 0              -- if    p is a factor
                                               then  p:(factors (div n p) p)
                                               else  factors n (succ p)        -- else  try next
    

    4

    A palindromic number reads the same both ways. The largest palindrome made from the product of two 2-digit numbers is 9009 = 91 × 99.
    Find the largest palindrome made from the product of two 3-digit numbers.

    answer = maximum $ [ x*y | x <- [ 100 .. 999 ],
                               y <- [ 100 .. 999 ],
                               isPalindrome $ show(x*y)
                       ]
                       where
                           isPalindrome l = l == reverse(l)
    

    5

    2520 is the smallest number that can be divided by each of the numbers from 1 to 10 without any remainder.
    What is the smallest positive number that is evenly divisible by all of the numbers from 1 to 20?

    foldr lcm 1 [1..20]
    

    6

    The sum of the squares of the first ten natural numbers is,
    1^2 + 2^2 + ... + 10^2 = 385

    The square of the sum of the first ten natural numbers is,
    (1 + 2 + ... + 10)^2 = 552 = 3025

    Hence the difference between the sum of the squares of the first ten natural numbers and the square of the sum is 3025 − 385 = 2640.

    Find the difference between the sum of the squares of the first one hundred natural numbers and the square of the sum.

    ans = s2 - s1
       where s1 = sum $ map ( a -> a^2 ) [ 1 .. 100 ]
             s2 = (sum [ 1 .. 100 ])^2
    

    出乎意料地快。

    8

    The four adjacent digits in the 1000-digit number that have the greatest product are 9 × 9 × 8 × 9 = 5832.

    73167176531330624919225119674426574742355349194934
    96983520312774506326239578318016984801869478851843
    85861560789112949495459501737958331952853208805511
    12540698747158523863050715693290963295227443043557
    66896648950445244523161731856403098711121722383113
    62229893423380308135336276614282806444486645238749
    30358907296290491560440772390713810515859307960866
    70172427121883998797908792274921901699720888093776
    65727333001053367881220235421809751254540594752243
    52584907711670556013604839586446706324415722155397
    53697817977846174064955149290862569321978468622482
    83972241375657056057490261407972968652414535100474
    82166370484403199890008895243450658541227588666881
    16427171479924442928230863465674813919123162824586
    17866458359124566529476545682848912883142607690042
    24219022671055626321111109370544217506941658960408
    07198403850962455444362981230987879927244284909188
    84580156166097919133875499200524063689912560717606
    05886116467109405077541002256983155200055935729725
    71636269561882670428252483600823257530420752963450

    Find the thirteen adjacent digits in the 1000-digit number that have the greatest product. What is the value of this product?

    import Data.Char
    ans = maximum productLst
     where productLst = getProductLst number
            where number = "7316717653133062491922511967442657474235534919493496983520312774506326239578318016984801869478851843858615607891129494954595017379583319528532088055111254069874715852386305071569329096329522744304355766896648950445244523161731856403098711121722383113622298934233803081353362766142828064444866452387493035890729629049156044077239071381051585930796086670172427121883998797908792274921901699720888093776657273330010533678812202354218097512545405947522435258490771167055601360483958644670632441572215539753697817977846174064955149290862569321978468622482839722413756570560574902614079729686524145351004748216637048440319989000889524345065854122758866688116427171479924442928230863465674813919123162824586178664583591245665294765456828489128831426076900422421902267105562632111110937054421750694165896040807198403850962455444362981230987879927244284909188845801561660979191338754992005240636899125607176060588611646710940507754100225698315520005593572972571636269561882670428252483600823257530420752963450"
                  getProductLst l | len == 13   = [ productOf1to13 ]
                                  | otherwise   = productOf1to13:getProductLst(tail l)
                   where len = length l
                         productOf1to13 = product from1to13
                          where from1to13 = map ( a -> read (a:[]) :: Integer) $ take 13 l
    --                                                                 ^^^^^^^
    --                                           Necessary. Or you will get some negative numbers.
    

    9

    A Pythagorean triplet is a set of three natural numbers, a < b < c, for which,
    a^2 + b^2 = c^2

    For example, 3^2 + 4^2 = 9 + 16 = 25 = 5^2.

    There exists exactly one Pythagorean triplet for which a + b + c = 1000.
    Find the product abc.

    ans = product' $ head $ [ (a, b, c) | c <- [ 1 .. 1000 ],
                                          b <- [ 1 .. c ],
                                          a <- [ 1 .. b ],
                                          a + b + c == 1000,
                                          a^2 + b^2 == c^2
                            ]
     where product' (x, y, z) = x * y * z
    
  • 相关阅读:
    java实现第六届蓝桥杯密文搜索
    java实现第六届蓝桥杯奇怪的数列
    jquery input 赋值和取值
    jQuery对html元素的取值与赋值实例详解
    Jmeter接口测试图文示例
    Jmeter接口测试案例实践(一)
    消息队列-推/拉模式学习 & ActiveMQ及JMS学习
    IDEA和Pycharm 等系列产品激活激活方法和激活码
    Mybatis中的association用法
    设置 Tomcat 的JVM运行内存
  • 原文地址:https://www.cnblogs.com/jt2001/p/projectEuler.html
Copyright © 2020-2023  润新知