• Hadoop数据目录迁移


    Hadoop数据目录迁移

    @(Hadoop)


    随着数据的不断导入和增大,原本集群部署的目录磁盘空间不足了,所以要把hadoop存储数据的位置迁移到另外一个巨大的磁盘上,另外的一个用意是将数据和程序分离开,以免互相影响。

    以下是迁移过程和需要注意的一些地方:

    动手之前先把集群停止,如果有hbase也一起停了,因为hbase的存储是依赖于hdfs的,如果没有停止就进行目录迁移hbase会出现错误。

    修改配置文件

    hadoop最重要的存储数据的配置在core-site.xml文件中设置,修改core-site.xml的hadoop.tmp.dir值为新磁盘的路径即可。

    考虑到数据和程序的分离,决定将那些会不断增长的文件都迁移出去,包括:日志文件,pid目录,journal目录。

    日志文件和pid目录在hadoop-env.sh中配置,export HADOOP_PID_DIR,HADOOP_LOG_DIR为对应磁盘路径即可。

    journal目录在hdfs-site.xml中配置dfs.journalnode.edits.dir

    同理,yarn和hbase的log和pid文件路径都可在*_env.sh文件中export设置

    改完Hadoop的配置文件之后将其拷贝到hbase/conf目录下

    hbase的日志文件和pid目录配置在hbase-daemon.sh的HBASE_PID_DIR,HBASE_LOG_DIR

    spark日志文件的pid目录在spark-env.sh的SPARK_PID_DIR,SPARK_LOG_DIR

    修改完之后拷贝配置文件到各个子节点。

    并将原始数据目录、日志目录和pid目录移动至新磁盘中,重新启动集群,查看输出信息是否正确。

    更新

    hdfs-site.xml中更新的配置:

    <property>
    <name>dfs.name.dir</name>  
    <value>/data2/hadoop/hdfs/name</value>  
    </property>
    <property>
    <name>dfs.data.dir</name>  
    <value>/data2/hadoop/hdfs/data</value>  
    </property>

    分别是存储hdfs元数据信息和数据的目录,如果没有配置则默认存储到hadoop.tmp.dir中。

    格式化hdfs系统之后,hbase启动异常,HMaster自动退出。

    日志信息:

    2016-01-15 14:01:38,231 DEBUG [MASTER_SERVER_OPERATIONS-zx-hadoop-210-11:60000-4] master.DeadServer: Finished processing zx-hadoop-210-24,60020,1452828414814
    2016-01-15 14:01:38,231 ERROR [MASTER_SERVER_OPERATIONS-zx-hadoop-210-11:60000-4] executor.EventHandler: Caught throwable while processing event M_SERVER_SHUTDOWN
    java.io.IOException: failed log splitting for zx-hadoop-210-24,60020,1452828414814, will retry
            at org.apache.hadoop.hbase.master.handler.ServerShutdownHandler.resubmit(ServerShutdownHandler.java:322)
            at org.apache.hadoop.hbase.master.handler.ServerShutdownHandler.process(ServerShutdownHandler.java:202)
            at org.apache.hadoop.hbase.executor.EventHandler.run(EventHandler.java:128)
            at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145)
            at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)
            at java.lang.Thread.run(Thread.java:745)
    Caused by: java.io.IOException: error or interrupted while splitting logs in [hdfs://ns1/hbase/WALs/zx-hadoop-210-24,60020,1452828414814-splitting] Task = installed =
     1 done = 0 error = 0
            at org.apache.hadoop.hbase.master.SplitLogManager.splitLogDistributed(SplitLogManager.java:362)
            at org.apache.hadoop.hbase.master.MasterFileSystem.splitLog(MasterFileSystem.java:410)
            at org.apache.hadoop.hbase.master.MasterFileSystem.splitLog(MasterFileSystem.java:384)
            at org.apache.hadoop.hbase.master.MasterFileSystem.splitLog(MasterFileSystem.java:282)
            at org.apache.hadoop.hbase.master.handler.ServerShutdownHandler.process(ServerShutdownHandler.java:195)
            ... 4 more
    2016-01-15 14:01:38,232 INFO  [master:zx-hadoop-210-11:60000-EventThread] zookeeper.ClientCnxn: EventThread shut down
    2016-01-15 14:01:38,232 INFO  [master:zx-hadoop-210-11:60000.oldLogCleaner] zookeeper.ZooKeeper: Session: 0x25243ddd648000a closed
    2016-01-15 14:01:38,232 DEBUG [MASTER_SERVER_OPERATIONS-zx-hadoop-210-11:60000-4] master.DeadServer: Finished processing zx-hadoop-210-22,60020,1452828414925
    2016-01-15 14:01:38,233 ERROR [MASTER_SERVER_OPERATIONS-zx-hadoop-210-11:60000-4] executor.EventHandler: Caught throwable while processing event M_SERVER_SHUTDOWN
    java.io.IOException: Server is stopped
            at org.apache.hadoop.hbase.master.handler.ServerShutdownHandler.process(ServerShutdownHandler.java:183)
            at org.apache.hadoop.hbase.executor.EventHandler.run(EventHandler.java:128)
            at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145)
            at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)
            at java.lang.Thread.run(Thread.java:745)
    2016-01-15 14:01:38,338 DEBUG [master:zx-hadoop-210-11:60000] catalog.CatalogTracker: Stopping catalog tracker org.apache.hadoop.hbase.catalog.CatalogTracker@6c4b58f0
    2016-01-15 14:01:38,338 INFO  [master:zx-hadoop-210-11:60000] client.HConnectionManager$HConnectionImplementation: Closing zookeeper sessionid=0x15243ddd6340004
    2016-01-15 14:01:38,343 INFO  [master:zx-hadoop-210-11:60000] zookeeper.ZooKeeper: Session: 0x15243ddd6340004 closed
    2016-01-15 14:01:38,343 INFO  [master:zx-hadoop-210-11:60000-EventThread] zookeeper.ClientCnxn: EventThread shut down
    2016-01-15 14:01:38,343 INFO  [zx-hadoop-210-11,60000,1452837685871.splitLogManagerTimeoutMonitor] master.SplitLogManager$TimeoutMonitor: zx-hadoop-210-11,60000,14528
    37685871.splitLogManagerTimeoutMonitor exiting
    2016-01-15 14:01:38,347 INFO  [master:zx-hadoop-210-11:60000] zookeeper.ZooKeeper: Session: 0x35243ddd73b0001 closed
    2016-01-15 14:01:38,347 INFO  [main-EventThread] zookeeper.ClientCnxn: EventThread shut down
    2016-01-15 14:01:38,347 INFO  [master:zx-hadoop-210-11:60000] master.HMaster: HMaster main thread exiting
    2016-01-15 14:01:38,350 ERROR [main] master.HMasterCommandLine: Master exiting
    java.lang.RuntimeException: HMaster Aborted
            at org.apache.hadoop.hbase.master.HMasterCommandLine.startMaster(HMasterCommandLine.java:192)
            at org.apache.hadoop.hbase.master.HMasterCommandLine.run(HMasterCommandLine.java:134)
            at org.apache.hadoop.util.ToolRunner.run(ToolRunner.java:70)
            at org.apache.hadoop.hbase.util.ServerCommandLine.doMain(ServerCommandLine.java:126)
            at org.apache.hadoop.hbase.master.HMaster.main(HMaster.java:2785)
    Fri Jan 15 14:15:02 CST 2016 Starting master on zx-hadoop-210-11

    解决方法

    • 1.切换到zookeeper的bin目录
    • 2.执行$sh zkCli.sh
    ls /
    rmr /hbase
    quit

    重启hbase。

    作者:@小黑

  • 相关阅读:
    vim使用笔记
    想象的天空
    修电脑记
    反编译 Component重要类,全文解释 - 组件篇
    被动扫描和主动处理的比较
    第一次运行起来XAML
    学习 Aero 随笔
    Google AdSense 申请已得到批准
    延迟加载的一般实现
    看见几篇文章,收藏一下。
  • 原文地址:https://www.cnblogs.com/jchubby/p/5449357.html
Copyright © 2020-2023  润新知