• LogisticRegression Algorithm——机器学习(西瓜书)读书笔记


    import numpy as np
    from sklearn.datasets import load_breast_cancer
    import sklearn.linear_model
    from numpy.linalg import  inv
    # numpy.linalg 是处理线性代数的包,inv为矩阵求逆
    
    #sigmoid函数
    def sigmoid(x):  
        # Sigmoid function
        return 1.0/(1 + np.exp(-x))
    
    
    # 梯度函数
    def gradient(t, y, phi):
        grad = phi.T * (y - t)
        return grad 
    
    
    # 计算海森矩阵
    def Hessian(t, y, phi):
        H = phi.T * (np.diag(np.diag(y * (1 - y).T))) * phi
        return H
    
    
    def Newton_Raphson(t, w, phi):
        #Newton_Raphson algorithm   牛顿法迭代
        for i in range(0,100):
            y = sigmoid(phi * w)
            grad = gradient(t, y, phi)
            H = Hessian(t, y, phi)
            w = w - inv(H+0.0001*np.eye(H.shape[0])) * grad
        return w
    
    
    # 测试算法(一个例子:sklearn中预测癌症数据包)
    
    # 导入数据
    cancer = load_breast_cancer()
    
    
    # 查看关键字
    print (cancer.keys())
    
    #标准化处理数据
    phi = np.mat(cancer.data)
    t = np.mat(cancer.target)
    phi = (phi - np.mean(phi, axis = 0))/(np.std(phi, axis = 0))
    
    # 切分数据集为训练集与测试集
    phi_train = np.mat(phi[0:200])
    t_train =np.mat(cancer.target[0:200].reshape((len(phi_train),1)))
    phi_test = np.mat(phi[200:-1])
    t_test = np.mat(cancer.target[200:-1].reshape((len(phi_test),1)))
    
    # 添加偏置项
    b1 = np.ones(len(phi_train))
    b2 = np.ones(len(phi_test))
    phi_train_b = np.c_[phi_train, b1]
    phi_test_b = np.c_[phi_test, b2]
    
    # 初始化权重 
    np.random.seed(666)     #使随机数产生后就固定下来
    w = np.mat(np.random.normal(0, 0.01, phi_train_b.shape[-1])).T
    W = Newton_Raphson(t_train, w, phi_train_b)
    
    # 计算预测正确的训练样本比例
    y_pred = sigmoid(phi_train_b * W)
    t_pred = np.where(y_pred > 0.5, 1 ,0)
    accuracy_train = np.mean(t_train == t_pred)
    print('The accuracy of train set is:',accuracy_train)
    
    
    # 计算预测正确测试样本比例
    y_pred = sigmoid(phi_test_b * W)
    t_pred = np.where(y_pred > 0.5, 1 ,0)
    accuracy_test = np.mean(t_test == t_pred)
    print('The accuracy of test set is:',accuracy_test)
    
    # 计算最后预测的准确率
    model = sklearn.linear_model.LogisticRegression(solver='newton-cg')
    model.fit(phi_train_b, t_train)
    y_pred = model.predict(phi_test_b)
    acc = np.mean(t_test== y_pred.reshape([-1,1]))
    print (acc)

     

  • 相关阅读:
    pygame学习笔记(6)——一个超级简单的游戏
    pygame学习笔记(4)——声音
    pygame学习笔记(5)——精灵
    pygame学习笔记(2)——从画点到动画
    pygame学习笔记(3)——时间、事件、文字
    pygame学习笔记(1)——安装及矩形、圆型画图
    pygame入门
    Pygame
    aes python加密
    php aes加密
  • 原文地址:https://www.cnblogs.com/jayechan/p/9678942.html
Copyright © 2020-2023  润新知