区间合并。给出一些数,记为a[i],两种操作。U x y表示把a[x] 的值改为 y。Q x y表示求xy间的最长连续上升序列(LCIS)。这里的x y都是从0开始的。
其实吧,就是比较当前区间的左右子区间能否相连,也就是说要看a[k] 与 a[k + 1]的大小关系(k表示区间中点)。其他操作跟“正常”题一样。
#pragma comment(linker, "/STACK:1024000000,1024000000") #include<algorithm> #include<iostream> #include<cstring> #include<cstdio> #include<vector> #include<queue> #include<cmath> ///LOOP #define REP(i, n) for(int i = 0; i < n; i++) #define FF(i, a, b) for(int i = a; i < b; i++) #define FFF(i, a, b) for(int i = a; i <= b; i++) #define FD(i, a, b) for(int i = a - 1; i >= b; i--) #define FDD(i, a, b) for(int i = a; i >= b; i--) ///INPUT #define RI(n) scanf("%d", &n) #define RII(n, m) scanf("%d%d", &n, &m) #define RIII(n, m, k) scanf("%d%d%d", &n, &m, &k) #define RIV(n, m, k, p) scanf("%d%d%d%d", &n, &m, &k, &p) #define RV(n, m, k, p, q) scanf("%d%d%d%d%d", &n, &m, &k, &p, &q) #define RFI(n) scanf("%lf", &n) #define RFII(n, m) scanf("%lf%lf", &n, &m) #define RFIII(n, m, k) scanf("%lf%lf%lf", &n, &m, &k) #define RFIV(n, m, k, p) scanf("%lf%lf%lf%lf", &n, &m, &k, &p) #define RS(s) scanf("%s", s) ///OUTPUT #define PN printf(" ") #define PI(n) printf("%d ", n) #define PIS(n) printf("%d ", n) #define PS(s) printf("%s ", s) #define PSS(s) printf("%s ", n) #define PC(n) printf("Case %d: ", n) ///OTHER #define PB(x) push_back(x) #define CLR(a, b) memset(a, b, sizeof(a)) #define CPY(a, b) memcpy(a, b, sizeof(b)) #define display(A, n, m) {REP(i, n){REP(j, m)PIS(A[i][j]);PN;}} #define lson l, m, rt << 1 #define rson m + 1, r, rt << 1 | 1 using namespace std; typedef long long LL; typedef pair<int, int> P; const int MOD = 9901; const int INFI = 1e9 * 2; const LL LINFI = 1e17; const double eps = 1e-6; const double pi = acos(-1.0); const int N = 111111; const int M = 22; const int move[8][2] = {0, 1, 0, -1, 1, 0, -1, 0, 1, 1, 1, -1, -1, 1, -1, -1}; int a[N], msum[N << 2], lsum[N << 2], rsum[N << 2], num, n; void pushup(int rt, int k, int m) { lsum[rt] = lsum[rt << 1]; rsum[rt] = rsum[rt << 1 | 1]; msum[rt] = max(msum[rt << 1], msum[rt << 1 | 1]); if(a[k] < a[k + 1]) { if(lsum[rt] == (m - (m >> 1)))lsum[rt] += lsum[rt << 1 | 1]; if(rsum[rt] == (m >> 1))rsum[rt] += rsum[rt << 1]; msum[rt] = max(msum[rt], lsum[rt << 1 | 1] + rsum[rt << 1]); } } void build(int l, int r, int rt) { if(l == r) { RI(a[num++]); msum[rt] = rsum[rt] = lsum[rt] = 1; return; } int m = (l + r) >> 1; build(lson); build(rson); pushup(rt, m, r - l + 1); } void update(int p, int x, int l, int r, int rt) { if(l == r) { a[p] = x; return; } int m = (l + r) >> 1; if(p <= m)update(p, x, lson); else update(p, x, rson); pushup(rt, m, r - l + 1); } int query(int L, int R, int l, int r, int rt) { if(L <= l && r <= R)return msum[rt]; int m = (l + r) >> 1, ans = 0; if(L <= m)ans = max(ans, query(L, R, lson)); if(R > m)ans = max(ans, query(L, R, rson)); if(a[m] < a[m + 1] && L <= m && m < R) { int tl = min(rsum[rt << 1], m - L + 1); int tr = min(lsum[rt << 1 | 1], R - m); ans = max(ans, tl + tr); } return ans; } int main() { //freopen("input.txt", "r", stdin); int t, m, x, y; char op[5]; RI(t); while(t--) { RII(n, m); num = 1; build(1, n, 1); while(m--) { RS(op); RII(x, y); if(op[0] == 'Q')PI(query(x + 1, y + 1, 1, n, 1)); else update(x + 1, y, 1, n, 1); } } return 0; }