• HDU 4618 Palindrome Sub-Array


    Palindrome Sub-Array

    Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others)
    Total Submission(s): 751    Accepted Submission(s): 366


    Problem Description
      A palindrome sequence is a sequence which is as same as its reversed order. For example, 1 2 3 2 1 is a palindrome sequence, but 1 2 3 2 2 is not. Given a 2-D array of N rows and M columns, your task is to find a maximum sub-array of P rows and P columns, of which each row and each column is a palindrome sequence.
     
    Input
      The first line of input contains only one integer, T, the number of test cases. Following T blocks, each block describe one test case.
      There is two integers N, M (1<=N, M<=300) separated by one white space in the first line of each block, representing the size of the 2-D array.
      Then N lines follow, each line contains M integers separated by white spaces, representing the elements of the 2-D array. All the elements in the 2-D array will be larger than 0 and no more than 31415926.
     
    Output
      For each test case, output P only, the size of the maximum sub-array that you need to find.
     
    Sample Input
    1 5 10 1 2 3 3 2 4 5 6 7 8 1 2 3 3 2 4 5 6 7 8 1 2 3 3 2 4 5 6 7 8 1 2 3 3 2 4 5 6 7 8 1 2 3 9 10 4 5 6 7 8
     
    Sample Output
    4
     
    Source
     
    Recommend
    zhuyuanchen520
     

    刚开始想多了,今天看看,暴力模拟就可以了

    #include<iostream>
    #include<cstdio>
    #include<cstring>
    #include<queue>
    #include<algorithm>
    
    using namespace std;
    
    int n,m,num[320][320];
    
    int ok(int x){
        int flag;
        for(int i=1;i<=n-x+1;i++){
            for(int j=1;j<=m-x+1;j++){
                flag=1;
                for(int l=i;l<=x+i-1 && flag;l++)
                    for(int r=j;r<j+x/2 && flag;r++)
                        if(num[l][r]!=num[l][x+j-1-(r-j)])
                            flag=0;
                //printf("i=%d  j=%d   x=%d
    ",i,j,x);
                /*
                if(flag){
                    printf("i=%d  j=%d                        x=%d
    ",i,j,x);
                    printf("--------------------
    ");
                    for(int l=i;l<x+i;l++){
                        for(int r=j;r<x+j;r++)
                            printf("%d ",num[l][r]);
                        printf("
    ");
                    }
                    printf("--------------------
    ");
                }
                */
                if(flag)
                    return x;
            }
        }
        //printf("222
    ");
        return 0;
    }
    
    int main(){
    
        //freopen("input.txt","r",stdin);
    
        int t;
        scanf("%d",&t);
        while(t--){
            scanf("%d%d",&n,&m);
            for(int i=1;i<=n;i++)
                for(int j=1;j<=m;j++)
                    scanf("%d",&num[i][j]);
            int i;
            for(i=min(n,m);i>1;i--)
                if(ok(i)){
                    printf("%d
    ",i);
                    break;
                }
            if(i==1)
                printf("1
    ");
        }
        return 0;
    }
  • 相关阅读:
    Binary Trees
    [POJ] String Matching
    Tree
    Maxmum subsequence sum problem
    poj 2104 划分树
    poj 2486 树形dp
    poj 1848 树形dp
    hdu 4578 线段树
    hdu 4585 set应用
    hdu 2412 树形DP
  • 原文地址:https://www.cnblogs.com/jackge/p/3224573.html
Copyright © 2020-2023  润新知