• Palindrome_滚动数组&&DP


    Description

    A palindrome is a symmetrical string, that is, a string read identically from left to right as well as from right to left. You are to write a program which, given a string, determines the minimal number of characters to be inserted into the string in order to obtain a palindrome. 

    As an example, by inserting 2 characters, the string "Ab3bd" can be transformed into a palindrome ("dAb3bAd" or "Adb3bdA"). However, inserting fewer than 2 characters does not produce a palindrome. 

    Input

    Your program is to read from standard input. The first line contains one integer: the length of the input string N, 3 <= N <= 5000. The second line contains one string with length N. The string is formed from uppercase letters from 'A' to 'Z', lowercase letters from 'a' to 'z' and digits from '0' to '9'. Uppercase and lowercase letters are to be considered distinct.

    Output

    Your program is to write to standard output. The first line contains one integer, which is the desired minimal number.

    Sample Input

    5
    Ab3bd

    Sample Output

    2

    【题意】给出一个字符串,求插入多少字符才能形成回文串;

    【思路】用a数组存储原串,b数组储存倒串,求最长公共子序列,答案用n-最长公共子序列;

    #include<iostream>
    #include<stdio.h>
    #include<string.h>
    using namespace std;
    const int N=5050;
    char a[N],b[N];
    //int dp[N][N];//MLE
    int dp[2][N];//用滚动数组
    int main()
    {
        int n;
        while(~scanf("%d",&n))
        {
            getchar();
            scanf("%s",a+1);
            for(int i=1;i<=n;i++)
            {
                b[n-i+1]=a[i];
            }
            memset(dp,0,sizeof(dp));
            int mx=0;
            /*for(int i=1;i<=n;i++)
            {
                for(int j=1;j<=n;j++)
                {
                    if(a[i]!=b[j])
                    {
                        dp[i][j]=max(dp[i-1][j],dp[i][j-1]);
                    }
                    else dp[i][j]=dp[i-1][j-1]+1;
                }
            }*/
            int e=0;//用滚动数组,节约存储空间!!!!
            for(int i=1;i<=n;i++)
            {
                e=1-e;
                for(int j=1;j<=n;j++)
                {
                    if(a[i]==b[j])
                    {
                        dp[e][j]=dp[1-e][j-1]+1;
                    }
                    else
                    {
                        if(dp[1-e][j]>dp[e][j-1])
                        {
                            dp[e][j]=dp[1-e][j];
                        }
                        else dp[e][j]=dp[e][j-1];
                    }
                }
            }
            for(int i=1;i<=n;i++)
            {
                mx=max(mx,max(dp[1-e][i],dp[e][i]));
            }
            int ans=n-mx;
            printf("%d
    ",ans);
        }
        return 0;
    }
  • 相关阅读:
    欧几里得方程 模幂运算 模乘运算 蒙哥马利模乘 素数测试
    HLG 1058workflow解题报告
    poj 3264Balanced Lineup解题报告
    JavaScript之HTMLCollection接口
    随记2(IE下调试Javascript)
    抽象类和接口
    JavaScript之字符串处理函数
    随记1
    多态
    自动内存管理
  • 原文地址:https://www.cnblogs.com/iwantstrong/p/5877324.html
Copyright © 2020-2023  润新知