• Spark中repartition和partitionBy的区别


    repartition 和 partitionBy 都是对数据进行重新分区,默认都是使用 HashPartitioner,区别在于partitionBy 只能用于 PairRDD,但是当它们同时都用于 PairRDD时,结果却不一样:

     不难发现,其实 partitionBy 的结果才是我们所预期的,我们打开 repartition 的源码进行查看:

    /**
       * Return a new RDD that has exactly numPartitions partitions.
       *
       * Can increase or decrease the level of parallelism in this RDD. Internally, this uses
       * a shuffle to redistribute data.
       *
       * If you are decreasing the number of partitions in this RDD, consider using `coalesce`,
       * which can avoid performing a shuffle.
       *
       * TODO Fix the Shuffle+Repartition data loss issue described in SPARK-23207.
       */
      def repartition(numPartitions: Int)(implicit ord: Ordering[T] = null): RDD[T] = withScope {
        coalesce(numPartitions, shuffle = true)
      }
    
      /**
       * Return a new RDD that is reduced into `numPartitions` partitions.
       *
       * This results in a narrow dependency, e.g. if you go from 1000 partitions
       * to 100 partitions, there will not be a shuffle, instead each of the 100
       * new partitions will claim 10 of the current partitions. If a larger number
       * of partitions is requested, it will stay at the current number of partitions.
       *
       * However, if you're doing a drastic coalesce, e.g. to numPartitions = 1,
       * this may result in your computation taking place on fewer nodes than
       * you like (e.g. one node in the case of numPartitions = 1). To avoid this,
       * you can pass shuffle = true. This will add a shuffle step, but means the
       * current upstream partitions will be executed in parallel (per whatever
       * the current partitioning is).
       *
       * @note With shuffle = true, you can actually coalesce to a larger number
       * of partitions. This is useful if you have a small number of partitions,
       * say 100, potentially with a few partitions being abnormally large. Calling
       * coalesce(1000, shuffle = true) will result in 1000 partitions with the
       * data distributed using a hash partitioner. The optional partition coalescer
       * passed in must be serializable.
       */
      def coalesce(numPartitions: Int, shuffle: Boolean = false,
                   partitionCoalescer: Option[PartitionCoalescer] = Option.empty)
                  (implicit ord: Ordering[T] = null)
          : RDD[T] = withScope {
        require(numPartitions > 0, s"Number of partitions ($numPartitions) must be positive.")
        if (shuffle) {
          /** Distributes elements evenly across output partitions, starting from a random partition. */
          val distributePartition = (index: Int, items: Iterator[T]) => {
            var position = new Random(hashing.byteswap32(index)).nextInt(numPartitions)
            items.map { t =>
              // Note that the hash code of the key will just be the key itself. The HashPartitioner
              // will mod it with the number of total partitions.
              position = position + 1
              (position, t)
            }
          } : Iterator[(Int, T)]
    
          // include a shuffle step so that our upstream tasks are still distributed
          new CoalescedRDD(
            new ShuffledRDD[Int, T, T](mapPartitionsWithIndex(distributePartition),
            new HashPartitioner(numPartitions)),
            numPartitions,
            partitionCoalescer).values
        } else {
          new CoalescedRDD(this, numPartitions, partitionCoalescer)
        }
      }

    即使是RairRDD也不会使用自己的key,repartition 其实使用了一个随机生成的数来当做 Key,而不是使用原来的 Key!!

  • 相关阅读:
    团队项目选题参考
    结对编程2——单元测试
    个人作业2——英语学习APP案例分析
    js创建数组
    oracle常用函数
    Oracle聚合函数
    Myeclipse10破解版安装包
    Myeclipse按包装SVN
    Eclipse安装SVN
    Git使用教程
  • 原文地址:https://www.cnblogs.com/itboys/p/9853594.html
Copyright © 2020-2023  润新知