• 使用WGAN生成手写字体


    import sys; 
    sys.path.append("/home/hxj/anaconda3/lib/python3.6/site-packages")
    import numpy as np
    import tensorflow as tf
    from PIL import Image
    from tensorflow.examples.tutorials.mnist import input_data
    #这里为了加快速度,先下载好再导入
    mnist = input_data.read_data_sets('MNIST_data', one_hot=True)
    print("##################")
    
    def combine(image):
        assert len(image) == 64
        rows = []
        for i in range(8):
            cols = []
            for j in range(8):
                index = i * 8 + j
                img = image[index].reshape(28, 28)
                cols.append(img)
            row = np.concatenate(tuple(cols), axis=0)
            rows.append(row)
        new_image = np.concatenate(tuple(rows), axis=1)
        return new_image.astype("uint8")
    
    
    def dense(inputs, shape, name, bn=False, act_fun=None):
        W = tf.get_variable(name + ".w", initializer=tf.random_normal(shape=shape))
        b = tf.get_variable(name + ".b", initializer=(tf.zeros((1, shape[-1])) + 0.1))
        y = tf.add(tf.matmul(inputs, W), b)
    
        def batch_normalization(inputs, out_size, name, axes=0):
            mean, var = tf.nn.moments(inputs, axes=[axes])
            scale = tf.get_variable(name=name + ".scale", initializer=tf.ones([out_size]))
            offset = tf.get_variable(name=name + ".shift", initializer=tf.zeros([out_size]))
            epsilon = 0.001
            return tf.nn.batch_normalization(inputs, mean, var, offset, scale, epsilon, name=name + ".bn")
    
        if bn:
            y = batch_normalization(y, shape[1], name=name + ".bn")
        if act_fun:
            y = act_fun(y)
        return y
    
    
    def D(inputs, name, reuse=False):
        with tf.variable_scope(name, reuse=reuse):
            l1 = dense(inputs, [784, 512], name="relu1", act_fun=tf.nn.relu)
            l2 = dense(l1, [512, 512], name="relu2", act_fun=tf.nn.relu)
            l3 = dense(l2, [512, 512], name="relu3", act_fun=tf.nn.relu)
            y = dense(l3, [512, 1], name="output")
            return y
    
    
    def G(inputs, name, reuse=False):
        with tf.variable_scope(name, reuse=reuse):
            l1 = dense(inputs, [100, 512], name="relu1", act_fun=tf.nn.relu)
            l2 = dense(l1, [512, 512], name="relu2", act_fun=tf.nn.relu)
            l3 = dense(l2, [512, 512], name="relu3", act_fun=tf.nn.relu)
            y = dense(l3, [512, 784], name="output", bn=True, act_fun=tf.nn.sigmoid)
            return y
    
    
    z = tf.placeholder(tf.float32, [None, 100], name="noise")  # 100
    x = tf.placeholder(tf.float32, [None, 784], name="image")  # 28*28
    
    real_out = D(x, "D")
    gen = G(z, "G")
    fake_out = D(gen, "D", reuse=True)
    
    vars = tf.trainable_variables()
    
    D_PARAMS = [var for var in vars if var.name.startswith("D")]
    G_PARAMS = [var for var in vars if var.name.startswith("G")]
    
    d_clip = [tf.assign(var, tf.clip_by_value(var, -0.01, 0.01)) for var in D_PARAMS]
    d_clip = tf.group(*d_clip)  # 限制参数
    
    wd = tf.reduce_mean(real_out) - tf.reduce_mean(fake_out)
    d_loss = tf.reduce_mean(fake_out) - tf.reduce_mean(real_out)
    g_loss = tf.reduce_mean(-fake_out)
    
    d_opt = tf.train.RMSPropOptimizer(1e-3).minimize(
        d_loss,
        global_step=tf.Variable(0),
        var_list=D_PARAMS
    )
    
    g_opt = tf.train.RMSPropOptimizer(1e-3).minimize(
        g_loss,
        global_step=tf.Variable(0),
        var_list=G_PARAMS
    )
    is_restore = False
    # is_restore = True  # 是否第一次训练(不需要载入模型)
    
    sess = tf.Session()
    sess.run(tf.global_variables_initializer())
    
    if is_restore:
        saver = tf.train.Saver()
        # 提取变量
        saver.restore(sess, "my_net/GAN_net.ckpt")
        print("Model restore...")
    
    
    CRITICAL_NUM = 5
    for step in range(100 * 1000):
        if step < 25 or step % 500 == 0:
            critical_num = 100
        else:
            critical_num = CRITICAL_NUM
        for ep in range(critical_num):
            noise = np.random.normal(size=(64, 100))
            batch_xs = mnist.train.next_batch(64)[0]
            _, d_loss_v, _ = sess.run([d_opt, d_loss, d_clip], feed_dict={
                x: batch_xs,
                z: noise
            })
    
    
        for ep in range(1):
            noise = np.random.normal(size=(64, 100))
            _, g_loss_v = sess.run([g_opt, g_loss], feed_dict={
                z: noise
            })
        print("Step:%d   D-loss:%.4f  G-loss:%.4f" % (step + 1, d_loss_v, g_loss_v))
        if step % 1000 == 999:
            batch_xs = mnist.train.next_batch(64)[0]
            # batch_xs = pre(batch_xs)
            noise = np.random.normal(size=(64, 100))
            mpl_v = sess.run(wd, feed_dict={
                x: batch_xs,
                z: noise
            })
            print("##################    Step %d  WD:%.4f ###############" % (step + 1, mpl_v))
            generate = sess.run(gen, feed_dict={
                z: noise
            })
    
            generate *= 255
            generate = np.clip(generate, 0, 255)
            image = combine(generate)
            Image.fromarray(image).save("image/Step_%d.jpg" % (step + 1))
            saver = tf.train.Saver()
            save_path = saver.save(sess, "my_net/GAN_net.ckpt")
            print("Model save in %s" % save_path)
    sess.close()

    实验结果

    训练1000次

     

     训练9000次

     训练15000次

    训练25000次

    训练3300次

    训练42000次

    训练5000次

  • 相关阅读:
    Django中文无法转换成latin-1编码的解决方案
    JS-排序详解:冒泡排序、选择排序和快速排序
    javascript实例
    selenium webdriver 启动三大浏览器Firefox,Chrome,IE
    javascript教程5:--BOM操作
    python----图像简单处理(PIL or Pillow)
    Python模块学习之bs4
    采集淘宝美人库
    JavaScript 中的FileReader对象(实现上传图片预览)
    WPF
  • 原文地址:https://www.cnblogs.com/hxjbc/p/8260541.html
Copyright © 2020-2023  润新知