• 算法分析-动态规划(最优二叉搜索树)


    前面说过动态规划最典型的就是解决最优化问题的(具有最优子结构的最优化问题),最优二叉查找树就是一个典型的最优化问题。


    问题描述:

    给定一个n元素的中序序列,它可以有卡特兰数个不同形状的二叉排序树。(卡特兰数的定义及证明参见组合数学):



    ,如果我们知道每个键的查找概率,怎么来构造一个平均查找代价最小(查找成功)的最优二叉查找树呢?


    -------------------------------------------------------------------------------------------------------------


    用动态规划来求解,首先要找到它的最优子结构性质,然后根据这个最优子结构来描述和刻画问题,得到状态转移的方程:


    1)最优子结构性质:


    看看一颗最优二叉查找树是怎么得到的?逆向思维,如果现在有一棵最优二叉查找树,root是ak,很容易得出:ak的左右子

    树也是最优二叉查找树(如果它的子树不是最优的,那就说明这个子树还可以继续调整,那么ak那颗树就也不是最优的

    了)。




    2)根据最优子结构性质来描述和刻画问题


    用C[i , j]表示从 i 到 j 的最优二叉查找树的代价,那么问题就被划分为了n^2个子问题了(顶点号从0计数),假设有n个顶

    点,那么我们的目标是要求C[0 , n-1]。(编号从0还是1开始无所谓,在编程的时候注意下标范围就行了)。


    现在根据它的最优子结构来找状态转移方程:

    从 i 到 j的一个最优二叉查找树是怎么得到的?(即一个C[i , j]是怎么来的),它是从 i 到 j 之间的顶点中选出一个顶点来做

    root,假设选出的这个做root的顶点是 k (i <= k <= j ),那么显然有:



    这个式子其实可以直接想到,不用那么复杂的推导,它就是要找一个能使得C[i , j]代价最小的 k (这个k的范围在 i 到 j之

    间),而后面为什么要加一个从i到j的概率呢?因为挑出了k后,它作root,每个点的查找长度都增加了1。当然,也有更严格

    的推导,可以参考下:



    3)有了状态转移方程,就可以画个矩阵看看初始条件,以及每个C[i , j]依赖那些值(填表顺序)。

    初始条件有:C[i , i] = Pi,C[i , i-1] = 0

    试探一下一个C[i , j]是怎么来的,就可以看出,应该沿对角线来填。

    注意状态转移方程里当 k = i 或者 k = j 时,C[i , i - 1] 或者 C[j+1 , j]是没有定义的,在编程中只需要特殊处理下就

    行:
    对于这种没有定义的取0,其他的取矩阵中的值。


    最后一点,至于具体的实现,tmd书上总喜欢画一个不是从0开始的表,有时候甚至还横坐标从0开始,纵坐标从1开始,虽说

    是为了填矩阵的方便,但看起来很狗。我一般n规模的问题,就开n * n的矩阵,下表从0到n-1,对超出边界的做一些特殊处

    理就行了,就像上面的C[i , i-1]。看看书上的表(理解意思,具体实现我开的矩阵不一样,下标控制不一样):




    它这样来画表其实就是为了解决C[i , i-1]不在定义范围内,为了能直接从矩阵中取值才这么做的。


    -------------------------------------------------------------------------------------------------------------


    上面就构造出了最优二叉查找树的最优代价的动态规划过程,利用上述状态转移方程可以填出所有的C[i , j]。

    还有一个问题,跟上一篇文章中提到的一样,怎么去不仅仅得到C[i , j]这个代价,更要知道对应于这个代价的二叉树的形

    状?

    仍然是构造一个矩阵 A[0...n-1,0...n-1] 来记录动态规划的过程,每次选出一个 k 作root时,就把 k 记录下来,即用

    A[i , j] = k 表示从 i 到 j 的最优二叉查找树的root是 k。(它还蕴含从 i 到 k - 1是左子树,k+1到 j 是右子树,注意我们

    给定的从0到n-1顶点是一个中序序列!)

    初始值 A[i , i] = i,表示只有自己的最优二叉查找树的root就是它自己。最后将得到一个矩阵A。它表达了二叉查找树的形

    状,当然,还得根据A的含义,从A中获取从 i 到 j的最优二叉查找树的形状。




    可以有下列算法,从A中输出从 i 到 j 的最优二叉查找树的形状(输出它的前序序列,因为中序序列是已知的):

    已知前序序列和中序序列,一个二叉树的形状就确定了:




    也是用递归(最优子结构),其实方法跟上一篇Floyd的也差不多。


    -------------------------------------------------------------------------------------------------------------

    实现:

    复制代码
    package Section8;


    /*第八章 动态规划 最优二叉查找树(难!!!)*/

    public class OptBST {

    /**
    * @param args
    */
    public static void main(String[] args) {
    // TODO Auto-generated method stub
    float[] P = {(float) 0.1,(float) 0.2,(float) 0.4,(float) 0.3};

    //若返回值是最小代价,测试最小代价是否正确
    //System.out.println("输出最优二叉排序树的最小代价: ");
    //float result = OptBST(P);
    //System.out.println(result);

    //若返回值是表达最优二叉排序树形状的矩阵,测试矩阵是否正确
    System.out.println("输出表达最优二叉排序树形状的矩阵: ");
    int[][] R = OptBST(P);
    for(int i = 0;i < R.length;i++)
    {
    for(int j = 0;j < R.length;j++)
    System.out.print(R[i][j] + "  ");
    System.out.println();
    }

    }


    public static int[][] OptBST(float[] P){
    //接受一个中序序列的点的查找概率数组,返回最优的二叉查找树的代价(注意P中的概率按顺序对应于点的中序序列)
    int n = P.length; //结点个数
    float[][] result = new float[n][n];

    int[][] R = new int[n][n]; //表达二叉查找树形状的矩阵

    for(int i = 0;i < n;i++)
    {
    result[i][i] = P[i]; //填充主对角线C[i,i] = P[i]
    R[i][i] = i; //R[i][j]表示若只构造从i到j的树,那么root是R[i][j]
    }

    for(int d = 1;d <= n - 1;d++) //共n-1条对角线需要填充
    {
    for(int i = 0;i <= n - d - 1;i++) //横坐标的范围与对角线编号d的关系
    {
    int j = i + d; //一旦横坐标确定后,纵坐标可以用横坐标与对角线编号表示出来
    float min = 1000000;

    int root = 0;

    for(int k = i;k <= j;k++)
    {
    float C1 = 0,C2 = 0; //用C1,C2表示result[i,k-1]和result[k+1,j]
    if(k > i)
    C1 = result[i][k - 1];
    if(k < j)
    C2 = result[k + 1][j];

    if(C1 + C2 < min)
    {
    min = C1 + C2;
    root = k;
    }
    }

    R[i][j] = root; //R[i][j]的值代表从i到j的最优二叉查找树的根

    float sum = 0;
    for(int s = i;s <= j;s++)
    //sum = sum + P[i]; //你妈啊,一个小错误找了半天
    sum = sum + P[s];

    result[i][j] = sum + min;
    }
    }

    //return result[0][n-1]; //返回C[1,n],最小代价
    return R; //返回表达最优二叉排序树形状的矩阵
    }

    }
    复制代码



    最优代价的矩阵和表达形状的矩阵在一起求的,需要哪个就返回哪个值,见代码。

    很容易看出时间复杂度是 n^3(k的选择需要一个循环) 的,空间复杂度是 n^2的。

    运行结果(返回表达二叉查找树形状的矩阵R):


    输出表达最优二叉排序树形状的矩阵:

    0  1  2  2  
    0  1  2  2  
    0  0  2  2  
    0  0  0  3  


    -------------------------------------------------------------------------------------------------------------


    思考:

    1,分析最优二叉查找树的时间复杂度,空间复杂度。(见分析讲解)


    2,写一个线性时间的伪代码,从根表(矩阵A)生成最优二叉查找树(见分析讲解)


    3,判断正误:一颗最优二叉查找树的根总是包含概率最高的键(错,很容易举反例,如果这句话是对的,那还要动态规划干

    吗,那就可以用更简单的办法来构造最优二叉排序树了--直接根据概率选最大值就行了)


    4,把最优二叉查找树(查找成功的代价最小)推广到成功和不成功总代价最小的情况(easy,改变C[i ,j]的含义,加上不成

    功的概率即可)


    5,证明:




    重要:事实上卡特兰数就是这样定义的,(如果后面有机会,我会深入学习下卡特兰数),该递推关系的解是由卡特兰数给

    出的(现在都忘了,可以参见《组合数学》  卢开澄   北京大学出版社)。


    如果不要求严格的证明,根据b(n)的含义,其实很容易写出上述递推式。(想一想)


    -------------------------------------------------------------------------------------------------------------


    最后一题:矩阵连乘问题,见下一篇文章,作为一个解题报告。

    ------------------------------------------------------------------------------------------------------------


    总结:

    1)怎么去分析一个问题,试图用动态规划去解决?(先找最优子结构,从最有子结构去刻画和描述问题

    2)逆向思维去找状态转移方程

    3)相对前面的几个动态规划算法,最优二叉查找树的填矩阵顺序稍显复杂(沿对角线),直接看递推式的数学形式可能看不

    出来,画出矩阵,去尝试一个C[i ,j]是怎么求出来的,就能清晰的看出来。

    4)卡特兰数非常重要,许多问题都是卡特兰数问题(参见什么叫做professional?),习题5给出了一个很好的引导证明。

  • 相关阅读:
    【python】Python 资源大全中文版
    获取最新chromedriver.exe的方法,并查阅最新的chromedriver.exe支持到什么chrome版本
    appium 重新启动apk
    git 命令操作
    [转]IDEA 出现编译错误 Multi-catches are not supported a this language level 解决方法
    jmeter压测前清理内存
    清理kafka zookeeper
    windows 自动移动maven jar包到jmeter 文件夹下面
    jmeter 压测duobbo接口,施压客户端自己把自己压死了
    kafak manager + zookeeper + kafka 消费队列快速清除
  • 原文地址:https://www.cnblogs.com/huenchao/p/5950848.html
Copyright © 2020-2023  润新知