• 《深度学习框架PyTorch入门与实践》示例——利用LeNet进行CIFAR-10分类


    平台及框架:python3 + anaconda + pytorch + pycharm

    我主要是根据陈云的《深度学习框架PyTorch入门与实践》来学习的,书中第二章的一个示例是利用卷积神经网络LeNet进行CIFAR-10分类。

    原书中的代码是在IPython或Jupyter Notebook中写的,在pycharm中写的时候遇到一些问题,在代码中有注释。

    下面附上LeNet进行CIFAR-10分类的python代码:

    import torch as t
    from torch.autograd import Variable
    import torch.nn as nn
    import torch.nn.functional as F
    import torchvision as tv
    import torchvision.transforms as transforms
    from torchvision.transforms import ToPILImage
    from torch import optim
    show = ToPILImage()
    
    # 数据预处理
    transform = transforms.Compose([
        transforms.ToTensor(),
        # 转为Tensor
        transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
        # 数据归一化
        # ToTensor()能够把灰度范围从0-255变换到0-1之间,而后面的transform.Normalize()则把0-1变换到(-1,1)
        # image=(image-mean)/std
        # 其中mean和std分别通过(0.5,0.5,0.5)和(0.5,0.5,0.5)进行指定。原来的0-1最小值0则变成(0-0.5)/0.5=-1,而最大值1则变成(1-0.5)/0.5=1
        # 前面的(0.5,0.5,0.5)是RGB三个通道上的均值, 后面(0.5, 0.5, 0.5)是三个通道的标准差
    ])
    
    if __name__ == '__main__':                  # 输出4张图片时,返回多线程出错的解决方法
        # 训练集
        trainset = tv.datasets.CIFAR10(root='E:/pycharm projects/book1/data',
                                       train=True,
                                       download=True,
                                       transform=transform)
        trainloader = t.utils.data.DataLoader(
            trainset,
            batch_size=4,
            shuffle=True,
            num_workers=2
        )
        # 测试集
        testset = tv.datasets.CIFAR10(
            'E:/pycharm projects/book1/data',
            train=False,
            download=True,
            transform=transform
        )
        testloader = t.utils.data.DataLoader(
            testset,
            batch_size=4,
            shuffle=False,
            num_workers=2
        )
        classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck')
    
        # (data, label) = trainset[100]
        # print(classes[label])
        # show((data + 1) / 2).resize((100, 100)).show()    # 按照书中不加.show()无法打印出图片
    
        # dataiter = iter(trainloader)
        # images, labels = dataiter.next()
        # print(' '.join('%11s' % classes[labels[j]] for j in range(4)))
        # show(tv.utils.make_grid((images + 1) / 2)).resize((400, 100)).show()
    
    
        # 定义网络
        class Net(nn.Module):
            def __init__(self):
                # 执行父类的构造函数
                super(Net, self).__init__()
                # '1':输入图片为单通道
                # '6':输出通道数
                # '5':卷积核5*5
                # 输入层
                self.conv1 = nn.Conv2d(3, 6, 5)               # ‘3’表示三通道彩图
                # 卷积层
                self.conv2 = nn.Conv2d(6, 16, 5)
                # 全连接层
                self.fc1 = nn.Linear(16*5*5, 120)
                self.fc2 = nn.Linear(120, 84)
                self.fc3 = nn.Linear(84, 10)
    
            def forward(self, x):
                # 卷积-激活-池化
                x = F.max_pool2d(F.relu(self.conv1(x)), (2, 2))
                x = F.max_pool2d(F.relu(self.conv2(x)), 2)
                # reshape, "-1"表示自适应
                x = x.view(x.size()[0], -1)
                x = F.relu(self.fc1(x))
                x = F.relu(self.fc2(x))
                x = self.fc3(x)
                return x
    
    
        net = Net()
    
        # 定义损失函数和优化器
        criterion = nn.CrossEntropyLoss()      # 交叉熵损失函数
        optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)
    
        for epoch in range(2):
            running_loss = 0.0
            for i, data in enumerate(trainloader, 0):
                # 输入数据
                inputs, labels = data
                inputs, labels = Variable(inputs), Variable(labels)
                # 梯度清零
                optimizer.zero_grad()
                # 前向传播+反向传播
                outputs = net(inputs)
                loss = criterion(outputs, labels)
                loss.backward()
                # 更新参数
                optimizer.step()
    
                running_loss += loss.data
                if i % 2000 == 1999:
                    print('[%d, %5d] loss: %.3f' % (epoch + 1, i + 1, running_loss / 2000))
                    running_loss = 0.0
    
        print('Finished Training')
        # 测试数据集
        # dataiter = iter(testloader)
        # images, labels = dataiter.next()
        # print('实际的label:', ' '.join('%08s' % classes[labels[j]] for j in range(4)))
        # # show(tv.utils.make_grid(images / 2 - 0.5)).resize((400, 100)).show()
        #
        # outputs = net(Variable(images))
        # _, predicted = t.max(outputs.data, 1)
        # print('预测结果:', ' '.join('%5s' % classes[predicted[j]] for j in range(4)))
        correct = 0
        total = 0
        for data in testloader:
            images, labels = data
            outputs = net(Variable(images))
            _, predicted = t.max(outputs, 1)
            total += labels.size(0)
            correct += (predicted == labels).sum()
    
        print('10000张测试集中的准确率为: %d %%' % (100 * t.true_divide(correct, total)))       # tensor和int之间的除法不能直接用'/',需要用t.true_divide(correct, total)

     测试结果如下:

  • 相关阅读:
    【Azure Redis 缓存】使用Azure Redis服务时候,如突然遇见异常,遇见命令Timeout performing SET xxxxxx等情况,如何第一时间查看是否有Failover存在呢?
    【Azure Redis 缓存】Azure Redis出现了超时问题后,记录一步一步的排查出异常的客户端连接和所执行命令的步骤
    【Azure Developer】Azure REST API: 如何通过 API查看 Recovery Services Vaults(恢复保管库)的备份策略信息? 如备份中是否含有虚拟机的Disk
    【Azure Redis 缓存】云服务Worker Role中调用StackExchange.Redis,遇见莫名异常(RedisConnectionException: UnableToConnect on xxx 或 No connection is available to service this operation: xxx)
    【Azure 环境】Azure通知中心(Notification Hub)使用百度推送平台解说
    【Azure 应用服务】Azure Function App使用SendGrid发送邮件遇见异常消息The operation was canceled,分析源码渐入最源端
    客户案例:敏捷转型的二三事儿
    从科学管理到丰田生产模式,精益是如何产生的?
    业务降本增效,数字化转型有妙招
    规模化敏捷 LeSS(三):LeSS Huge 是怎样炼成的?
  • 原文地址:https://www.cnblogs.com/huangliu1111/p/14025144.html
Copyright © 2020-2023  润新知