Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which minimizes the sum of all numbers along its path.
Note: You can only move either down or right at any point in time.
//利用dp解决,动态转移方程为: // dp[i][j] = min(dp[i-1][j],dp[i][j-1]) + grid[i][j]. class Solution { public: int minPathSum(std::vector<std::vector<int> > &grid) { std::vector<std::vector<int>> dp(grid.size(),std::vector<int>(grid[0].size(),0)); dp[0][0] = grid[0][0]; for (int i = 1; i < grid.size(); i++) { dp[i][0] = dp[i-1][0] + grid[i][0]; } for (int i = 1; i < grid[0].size(); i++) { dp[0][i] = dp[0][i-1] + grid[0][i]; } for (int i = 1; i < grid.size(); i++) { for (int j = 1; j < grid[0].size(); j++) { dp[i][j] = std::min(dp[i-1][j],dp[i][j-1]) + grid[i][j]; } } return dp[grid.size()-1][grid[0].size()-1]; } };
版权声明:本文博主原创文章,博客,未经同意不得转载。