spark的standlone模式安装
安装一个standlone模式的spark集群,这里是最基本的安装,并测试一下如何进行任务提交。
require:提前安装好jdk 1.7.0_80 ;scala 2.11.8
可以参考官网的说明:http://spark.apache.org/docs/latest/spark-standalone.html
1. 到spark的官网下载spark的安装包
http://spark.apache.org/downloads.html
spark-2.0.2-bin-hadoop2.7.tgz.tar
2. 解压缩
cd /home/hadoop/soft
tar -zxvf spark-2.0.2-bin-hadoop2.7.tgz.tar
ln -s /home/hadoop/soft/spark-2.0.2-bin-hadoop2.7 /usr/local/spark
3.配置环境变量
su - hadoop
vi ~/.bashrc
export SPARK_HOME="/usr/local/spark"
export PATH="$SPARK_HOME/bin:$SPARK_HOME/sbin:$PATH"
source ~/.bashrc
which spark-shell
4.修改spark的配置
进入spark配置目录进行配置:
cd /usr/local/spark/conf
cp log4j.properties.template log4j.properties ##修改 log4j.rootCategory=WARN, console
cp spark-env.sh.template spark-env.sh
vi spark-env.sh ##设置spark的环境变量,进入spark-env.sh文件添加:
export SPARK_HOME=/usr/local/spark
export SCALA_HOME=/usr/local/scala
至此,Spark就已经安装好了
5. 运行spark:
Spark-Shell命令可以进入spark,可以使用Ctrl D组合键退出Shell:
Spark-Shell
hadoop@ubuntuServer01:~$ spark-shell
Setting default log level to "WARN".
To adjust logging level use sc.setLogLevel(newLevel).
16/12/08 16:44:41 WARN NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
16/12/08 16:44:44 WARN SparkContext: Use an existing SparkContext, some configuration may not take effect.
Spark context Web UI available at http://192.168.17.50:4040
Spark context available as 'sc' (master = local[*], app id = local-1481186684381).
Spark session available as 'spark'.
Welcome to
____ __
/ __/__ ___ _____/ /__
_ / _ / _ `/ __/ '_/
/___/ .__/\_,_/_/ /_/\_ version 2.0.2
/_/
Using Scala version 2.11.8 (Java HotSpot(TM) 64-Bit Server VM, Java 1.7.0_80)
Type in expressions to have them evaluated.
Type :help for more information.
scala>
启动spark服务:
start-master.sh ##
hadoop@ubuntuServer01:~$ start-master.sh
starting org.apache.spark.deploy.master.Master, logging to /usr/local/spark/logs/spark-hadoop-org.apache.spark.deploy.master.Master-1-ubuntuServer01.out
hadoop@ubuntuServer01:~$ jps
2630 Master
2683 Jps
这里我们启动了主结点,jps多了一个Master的spark进程。
如果主节点启动成功,master默认可以通过web访问:http://ubuntuServer01:8080,查看sparkMaster的UI。
图中所述的spark://ubuntuServer01:7077 就是从结点启动的参数。
spark的master节点HA可以通过zookeeper和Local File System两种方法实现,具体可以参考官方的文档 http://spark.apache.org/docs/latest/spark-standalone.html#high-availability。
启动spark的slave从节点
start-slave.sh spark://ubuntuServer01:7077
hadoop@ubuntuServer01:~$ start-slave.sh spark://ubuntuServer01:7077
starting org.apache.spark.deploy.worker.Worker, logging to /usr/local/spark/logs/spark-hadoop-org.apache.spark.deploy.worker.Worker-1-ubuntuServer01.out
hadoop@ubuntuServer01:~$ jps
2716 Worker
2765 Jps
2630 Master
hadoop@ubuntuServer01:~$
运行jps命令,发现多了一个spark的worker进程。UI页面上的workers列表中也多了一条记录。
6. 运行一个Application在spark集群上。
运行一个交互式的spark shell在spark集群中:通过如下命令行:
spark-shell --master spark://ubuntuServer01:7077
hadoop@ubuntuServer01:~$ spark-shell --master spark://ubuntuServer01:7077
Setting default log level to "WARN".
To adjust logging level use sc.setLogLevel(newLevel).
16/12/08 17:51:01 WARN NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
16/12/08 17:51:05 WARN SparkContext: Use an existing SparkContext, some configuration may not take effect.
Spark context Web UI available at http://192.168.17.50:4040
Spark context available as 'sc' (master = spark://ubuntuServer01:7077, app id = app-20161208175104-0000).
Spark session available as 'spark'.
Welcome to
____ __
/ __/__ ___ _____/ /__
_ / _ / _ `/ __/ '_/
/___/ .__/\_,_/_/ /_/\_ version 2.0.2
/_/
Using Scala version 2.11.8 (Java HotSpot(TM) 64-Bit Server VM, Java 1.7.0_80)
Type in expressions to have them evaluated.
Type :help for more information.
scala>
从运行日志中可以看到job的UI(Spark web UI)页面地址:http://192.168.17.50:4040
和application id "app-20161208175104-0000",任务运行结束后,Spark web UI页面也会随之关闭。
使用spark-submit脚本执行一个spark任务:
spark-submit
--class org.apache.spark.examples.SparkPi
--master spark://ubuntuServer01:7077
--executor-memory 1G
--total-executor-cores 1
$SPARK_HOME/examples/jars/spark-examples_2.11-2.0.2.jar
10
使用spark-submit 提交 application可以参考spark的官方文档。
http://spark.apache.org/docs/latest/submitting-applications.html