【原题】
Description
The citizens of Bytetown, AB, could not stand that the candidates in the mayoral election campaign have been placing their electoral posters at all places at their whim. The city council has finally decided to build an electoral wall for placing the posters and introduce the following rules:
They have built a wall 10000000 bytes long (such that there is enough place for all candidates). When the electoral campaign was restarted, the candidates were placing their posters on the wall and their posters differed widely in width. Moreover, the candidates started placing their posters on wall segments already occupied by other posters. Everyone in Bytetown was curious whose posters will be visible (entirely or in part) on the last day before elections.
Your task is to find the number of visible posters when all the posters are placed given the information about posters' size, their place and order of placement on the electoral wall.
- Every candidate can place exactly one poster on the wall.
- All posters are of the same height equal to the height of the wall; the width of a poster can be any integer number of bytes (byte is the unit of length in Bytetown).
- The wall is divided into segments and the width of each segment is one byte.
- Each poster must completely cover a contiguous number of wall segments.
They have built a wall 10000000 bytes long (such that there is enough place for all candidates). When the electoral campaign was restarted, the candidates were placing their posters on the wall and their posters differed widely in width. Moreover, the candidates started placing their posters on wall segments already occupied by other posters. Everyone in Bytetown was curious whose posters will be visible (entirely or in part) on the last day before elections.
Your task is to find the number of visible posters when all the posters are placed given the information about posters' size, their place and order of placement on the electoral wall.
Input
The
first line of input contains a number c giving the number of cases that
follow. The first line of data for a single case contains number 1 <=
n <= 10000. The subsequent n lines describe the posters in the order
in which they were placed. The i-th line among the n lines contains two
integer numbers li and ri which are the number of the wall
segment occupied by the left end and the right end of the i-th poster,
respectively. We know that for each 1 <= i <= n, 1 <= li <= ri <= 10000000. After the i-th poster is placed, it entirely covers all wall segments numbered li, li+1 ,... , ri.
Output
For each input data set print the number of visible posters after all the posters are placed.
The picture below illustrates the case of the sample input.
The picture below illustrates the case of the sample input.
Sample
Input
1 5 1 4 2 6 8 10 3 4 7 10
Output
4
【思路】
离散化预处理左右边界,线段树进行区间更新。
1 #include <algorithm> 2 #include <cmath> 3 #include <cstdio> 4 #include <cstring> 5 #include <list> 6 #include <map> 7 #include <iostream> 8 #include <queue> 9 #include <set> 10 #include <stack> 11 #include <string> 12 #include <vector> 13 #include <iomanip> 14 #define LL long long 15 #define inf 0x3f3f3f3f 16 #define INF 0x3f3f3f3f3f3f 17 #define PI 3.1415926535898 18 #define F first 19 #define S second 20 #define lson rt << 1 21 #define rson rt << 1 | 1 22 using namespace std; 23 24 const int maxn = 2e4 + 7; 25 const int maxm = 2e5 + 7; 26 int n, m, a[maxn], vis[maxn]; 27 pair<int, int> p[maxn]; 28 29 int tree[maxn * 4], lz[maxn * 4]; 30 void push_down(int rt, int l, int r) { 31 if (lz[rt]) { 32 lz[lson] = lz[rt]; 33 lz[rson] = lz[rt]; 34 tree[lson] = tree[rson] = lz[rt]; 35 lz[rt] = 0; 36 } 37 } 38 void update_range(int rt, int l, int r, int L, int R, int add) { 39 if (l <= L && r >= R) { 40 lz[rt] = add; 41 tree[rt] = add; 42 return; 43 } 44 push_down(rt, L, R); 45 int mid = (L + R) / 2; 46 if (mid >= l) update_range(lson, l, r, L, mid, add); 47 if (mid < r) update_range(rson, l, r, mid + 1, R, add); 48 } 49 int query_range(int rt, int l, int r, int L, int R) { 50 if (lz[rt]) 51 { 52 if (vis[lz[rt]]) return 0; 53 vis[lz[rt]] = 1; 54 return 1; 55 } 56 if (L == R) return 0; 57 push_down(rt, L, R); 58 int mid = (L + R) / 2; 59 int sum = 0; 60 if (mid >= l) sum += query_range(lson, l, r, L, mid); 61 if (mid < r) sum += query_range(rson, l, r, mid + 1, R); 62 return sum; 63 } 64 65 int main() 66 { 67 ios::sync_with_stdio(false); 68 cin.tie(0); 69 int t; 70 cin >> t; 71 while (t--) 72 { 73 memset(vis, 0, sizeof(vis)); 74 memset(lz, 0, sizeof(lz)); 75 memset(tree, 0, sizeof(tree)); 76 cin >> n; 77 int cnt = 0; 78 for (int i = 1; i <= n; i++) 79 { 80 cin >> p[i].F >> p[i].S; 81 a[++cnt] = p[i].F; 82 a[++cnt] = p[i].S; 83 } 84 sort(a + 1, a + cnt + 1); 85 int sz = unique(a + 1, a + 1 + cnt) - a - 1; 86 for (int i = 1; i <= n; i++) 87 { 88 p[i].F = lower_bound(a + 1, a + sz + 1, p[i].F) - a; 89 p[i].S = lower_bound(a + 1, a + sz + 1, p[i].S) - a; 90 } 91 for (int i = 1; i <= n; i++) 92 { 93 update_range(1, p[i].F, p[i].S, 1, sz, i); 94 } 95 cout << query_range(1, 1, sz, 1, sz) << endl; 96 } 97 }