opencv中计算两个数组差的绝对值的函数
void cv::absdiff( InputArray src1, InputArray src2, OutputArray dst ) { CV_INSTRUMENT_REGION() arithm_op(src1, src2, dst, noArray(), -1, getAbsDiffTab(), false, 0, OCL_OP_ABSDIFF); }
static void arithm_op(InputArray _src1, InputArray _src2, OutputArray _dst, InputArray _mask, int dtype, BinaryFuncC* tab, bool muldiv=false, void* usrdata=0, int oclop=-1 ) { const _InputArray *psrc1 = &_src1, *psrc2 = &_src2; int kind1 = psrc1->kind(), kind2 = psrc2->kind(); bool haveMask = !_mask.empty(); bool reallocate = false; int type1 = psrc1->type(), depth1 = CV_MAT_DEPTH(type1), cn = CV_MAT_CN(type1); int type2 = psrc2->type(), depth2 = CV_MAT_DEPTH(type2), cn2 = CV_MAT_CN(type2); int wtype, dims1 = psrc1->dims(), dims2 = psrc2->dims(); Size sz1 = dims1 <= 2 ? psrc1->size() : Size(); Size sz2 = dims2 <= 2 ? psrc2->size() : Size(); #ifdef HAVE_OPENCL bool use_opencl = OCL_PERFORMANCE_CHECK(_dst.isUMat()) && dims1 <= 2 && dims2 <= 2; #endif bool src1Scalar = checkScalar(*psrc1, type2, kind1, kind2); bool src2Scalar = checkScalar(*psrc2, type1, kind2, kind1); if( (kind1 == kind2 || cn == 1) && sz1 == sz2 && dims1 <= 2 && dims2 <= 2 && type1 == type2 && !haveMask && ((!_dst.fixedType() && (dtype < 0 || CV_MAT_DEPTH(dtype) == depth1)) || (_dst.fixedType() && _dst.type() == type1)) && ((src1Scalar && src2Scalar) || (!src1Scalar && !src2Scalar)) ) { _dst.createSameSize(*psrc1, type1); CV_OCL_RUN(use_opencl, ocl_arithm_op(*psrc1, *psrc2, _dst, _mask, (!usrdata ? type1 : std::max(depth1, CV_32F)), usrdata, oclop, false)) Mat src1 = psrc1->getMat(), src2 = psrc2->getMat(), dst = _dst.getMat(); Size sz = getContinuousSize(src1, src2, dst, src1.channels()); tab[depth1](src1.ptr(), src1.step, src2.ptr(), src2.step, dst.ptr(), dst.step, sz.width, sz.height, usrdata); return; } bool haveScalar = false, swapped12 = false; if( dims1 != dims2 || sz1 != sz2 || cn != cn2 || (kind1 == _InputArray::MATX && (sz1 == Size(1,4) || sz1 == Size(1,1))) || (kind2 == _InputArray::MATX && (sz2 == Size(1,4) || sz2 == Size(1,1))) ) { if( checkScalar(*psrc1, type2, kind1, kind2) ) { // src1 is a scalar; swap it with src2 swap(psrc1, psrc2); swap(sz1, sz2); swap(type1, type2); swap(depth1, depth2); swap(cn, cn2); swap(dims1, dims2); swapped12 = true; if( oclop == OCL_OP_SUB ) oclop = OCL_OP_RSUB; if ( oclop == OCL_OP_DIV_SCALE ) oclop = OCL_OP_RDIV_SCALE; } else if( !checkScalar(*psrc2, type1, kind2, kind1) ) CV_Error( CV_StsUnmatchedSizes, "The operation is neither 'array op array' " "(where arrays have the same size and the same number of channels), " "nor 'array op scalar', nor 'scalar op array'" ); haveScalar = true; CV_Assert(type2 == CV_64F && (sz2.height == 1 || sz2.height == 4)); if (!muldiv) { Mat sc = psrc2->getMat(); depth2 = actualScalarDepth(sc.ptr<double>(), sz2 == Size(1, 1) ? cn2 : cn); if( depth2 == CV_64F && (depth1 < CV_32S || depth1 == CV_32F) ) depth2 = CV_32F; } else depth2 = CV_64F; } if( dtype < 0 ) { if( _dst.fixedType() ) dtype = _dst.type(); else { if( !haveScalar && type1 != type2 ) CV_Error(CV_StsBadArg, "When the input arrays in add/subtract/multiply/divide functions have different types, " "the output array type must be explicitly specified"); dtype = type1; } } dtype = CV_MAT_DEPTH(dtype); if( depth1 == depth2 && dtype == depth1 ) wtype = dtype; else if( !muldiv ) { wtype = depth1 <= CV_8S && depth2 <= CV_8S ? CV_16S : depth1 <= CV_32S && depth2 <= CV_32S ? CV_32S : std::max(depth1, depth2); wtype = std::max(wtype, dtype); // when the result of addition should be converted to an integer type, // and just one of the input arrays is floating-point, it makes sense to convert that input to integer type before the operation, // instead of converting the other input to floating-point and then converting the operation result back to integers. if( dtype < CV_32F && (depth1 < CV_32F || depth2 < CV_32F) ) wtype = CV_32S; } else { wtype = std::max(depth1, std::max(depth2, CV_32F)); wtype = std::max(wtype, dtype); } dtype = CV_MAKETYPE(dtype, cn); wtype = CV_MAKETYPE(wtype, cn); if( haveMask ) { int mtype = _mask.type(); CV_Assert( (mtype == CV_8UC1 || mtype == CV_8SC1) && _mask.sameSize(*psrc1) ); reallocate = !_dst.sameSize(*psrc1) || _dst.type() != dtype; } _dst.createSameSize(*psrc1, dtype); if( reallocate ) _dst.setTo(0.); CV_OCL_RUN(use_opencl, ocl_arithm_op(*psrc1, *psrc2, _dst, _mask, wtype, usrdata, oclop, haveScalar)) BinaryFunc cvtsrc1 = type1 == wtype ? 0 : getConvertFunc(type1, wtype); BinaryFunc cvtsrc2 = type2 == type1 ? cvtsrc1 : type2 == wtype ? 0 : getConvertFunc(type2, wtype); BinaryFunc cvtdst = dtype == wtype ? 0 : getConvertFunc(wtype, dtype); size_t esz1 = CV_ELEM_SIZE(type1), esz2 = CV_ELEM_SIZE(type2); size_t dsz = CV_ELEM_SIZE(dtype), wsz = CV_ELEM_SIZE(wtype); size_t blocksize0 = (size_t)(BLOCK_SIZE + wsz-1)/wsz; BinaryFunc copymask = getCopyMaskFunc(dsz); Mat src1 = psrc1->getMat(), src2 = psrc2->getMat(), dst = _dst.getMat(), mask = _mask.getMat(); AutoBuffer<uchar> _buf; uchar *buf, *maskbuf = 0, *buf1 = 0, *buf2 = 0, *wbuf = 0; size_t bufesz = (cvtsrc1 ? wsz : 0) + (cvtsrc2 || haveScalar ? wsz : 0) + (cvtdst ? wsz : 0) + (haveMask ? dsz : 0); BinaryFuncC func = tab[CV_MAT_DEPTH(wtype)]; if( !haveScalar ) { const Mat* arrays[] = { &src1, &src2, &dst, &mask, 0 }; uchar* ptrs[4]; NAryMatIterator it(arrays, ptrs); size_t total = it.size, blocksize = total; if( haveMask || cvtsrc1 || cvtsrc2 || cvtdst ) blocksize = std::min(blocksize, blocksize0); _buf.allocate(bufesz*blocksize + 64); buf = _buf; if( cvtsrc1 ) buf1 = buf, buf = alignPtr(buf + blocksize*wsz, 16); if( cvtsrc2 ) buf2 = buf, buf = alignPtr(buf + blocksize*wsz, 16); wbuf = maskbuf = buf; if( cvtdst ) buf = alignPtr(buf + blocksize*wsz, 16); if( haveMask ) maskbuf = buf; for( size_t i = 0; i < it.nplanes; i++, ++it ) { for( size_t j = 0; j < total; j += blocksize ) { int bsz = (int)MIN(total - j, blocksize); Size bszn(bsz*cn, 1); const uchar *sptr1 = ptrs[0], *sptr2 = ptrs[1]; uchar* dptr = ptrs[2]; if( cvtsrc1 ) { cvtsrc1( sptr1, 1, 0, 1, buf1, 1, bszn, 0 ); sptr1 = buf1; } if( ptrs[0] == ptrs[1] ) sptr2 = sptr1; else if( cvtsrc2 ) { cvtsrc2( sptr2, 1, 0, 1, buf2, 1, bszn, 0 ); sptr2 = buf2; } if( !haveMask && !cvtdst ) func( sptr1, 1, sptr2, 1, dptr, 1, bszn.width, bszn.height, usrdata ); else { func( sptr1, 1, sptr2, 1, wbuf, 0, bszn.width, bszn.height, usrdata ); if( !haveMask ) cvtdst( wbuf, 1, 0, 1, dptr, 1, bszn, 0 ); else if( !cvtdst ) { copymask( wbuf, 1, ptrs[3], 1, dptr, 1, Size(bsz, 1), &dsz ); ptrs[3] += bsz; } else { cvtdst( wbuf, 1, 0, 1, maskbuf, 1, bszn, 0 ); copymask( maskbuf, 1, ptrs[3], 1, dptr, 1, Size(bsz, 1), &dsz ); ptrs[3] += bsz; } } ptrs[0] += bsz*esz1; ptrs[1] += bsz*esz2; ptrs[2] += bsz*dsz; } } } else { const Mat* arrays[] = { &src1, &dst, &mask, 0 }; uchar* ptrs[3]; NAryMatIterator it(arrays, ptrs); size_t total = it.size, blocksize = std::min(total, blocksize0); _buf.allocate(bufesz*blocksize + 64); buf = _buf; if( cvtsrc1 ) buf1 = buf, buf = alignPtr(buf + blocksize*wsz, 16); buf2 = buf; buf = alignPtr(buf + blocksize*wsz, 16); wbuf = maskbuf = buf; if( cvtdst ) buf = alignPtr(buf + blocksize*wsz, 16); if( haveMask ) maskbuf = buf; convertAndUnrollScalar( src2, wtype, buf2, blocksize); for( size_t i = 0; i < it.nplanes; i++, ++it ) { for( size_t j = 0; j < total; j += blocksize ) { int bsz = (int)MIN(total - j, blocksize); Size bszn(bsz*cn, 1); const uchar *sptr1 = ptrs[0]; const uchar* sptr2 = buf2; uchar* dptr = ptrs[1]; if( cvtsrc1 ) { cvtsrc1( sptr1, 1, 0, 1, buf1, 1, bszn, 0 ); sptr1 = buf1; } if( swapped12 ) std::swap(sptr1, sptr2); if( !haveMask && !cvtdst ) func( sptr1, 1, sptr2, 1, dptr, 1, bszn.width, bszn.height, usrdata ); else { func( sptr1, 1, sptr2, 1, wbuf, 1, bszn.width, bszn.height, usrdata ); if( !haveMask ) cvtdst( wbuf, 1, 0, 1, dptr, 1, bszn, 0 ); else if( !cvtdst ) { copymask( wbuf, 1, ptrs[2], 1, dptr, 1, Size(bsz, 1), &dsz ); ptrs[2] += bsz; } else { cvtdst( wbuf, 1, 0, 1, maskbuf, 1, bszn, 0 ); copymask( maskbuf, 1, ptrs[2], 1, dptr, 1, Size(bsz, 1), &dsz ); ptrs[2] += bsz; } } ptrs[0] += bsz*esz1; ptrs[1] += bsz*dsz; } } } }
代码来自:opencv3_4_1opencv-3.4.1modulescoresrcarithm.cpp 990
#######################################################