• TimSort Java源码个人解读


       1 /*JDK 1.8
       2  */
       3 
       4 package java.util;
       5 
       6 /**
       7  * A stable, adaptive, iterative mergesort that requires far fewer than
       8  * n lg(n) comparisons when running on partially sorted arrays, while
       9  * offering performance comparable to a traditional mergesort when run
      10  * on random arrays.  Like all proper mergesorts, this sort is stable and
      11  * runs O(n log n) time (worst case).  In the worst case, this sort requires
      12  * temporary storage space for n/2 object references; in the best case,
      13  * it requires only a small constant amount of space.
      14  *
      15  * This implementation was adapted from Tim Peters's list sort for
      16  * Python, which is described in detail here:
      17  *
      18  *   http://svn.python.org/projects/python/trunk/Objects/listsort.txt
      19  *
      20  * Tim's C code may be found here:
      21  *
      22  *   http://svn.python.org/projects/python/trunk/Objects/listobject.c
      23  *
      24  * The underlying techniques are described in this paper (and may have
      25  * even earlier origins):
      26  *
      27  *  "Optimistic Sorting and Information Theoretic Complexity"
      28  *  Peter McIlroy
      29  *  SODA (Fourth Annual ACM-SIAM Symposium on Discrete Algorithms),
      30  *  pp 467-474, Austin, Texas, 25-27 January 1993.
      31  *
      32  * While the API to this class consists solely of static methods, it is
      33  * (privately) instantiable; a TimSort instance holds the state of an ongoing
      34  * sort, assuming the input array is large enough to warrant the full-blown
      35  * TimSort. Small arrays are sorted in place, using a binary insertion sort.
      36  *
      37  * @author Josh Bloch
      38  */
      39 class TimSort<T> {
      40     /**
      41      * This is the minimum sized sequence that will be merged.  Shorter
      42      * sequences will be lengthened by calling binarySort.  If the entire
      43      * array is less than this length, no merges will be performed.
      44      *
      45      * This constant should be a power of two.  It was 64 in Tim Peter's C
      46      * implementation, but 32 was empirically determined to work better in
      47      * this implementation.  In the unlikely event that you set this constant
      48      * to be a number that's not a power of two, you'll need to change the
      49      * {@link #minRunLength} computation.
      50      *
      51      * If you decrease this constant, you must change the stackLen
      52      * computation in the TimSort constructor, or you risk an
      53      * ArrayOutOfBounds exception.  See listsort.txt for a discussion
      54      * of the minimum stack length required as a function of the length
      55      * of the array being sorted and the minimum merge sequence length.
      56      */
      57     private static final int MIN_MERGE = 32;
      58 
      59     /**
      60      * The array being sorted.
      61      */
      62     private final T[] a;
      63 
      64     /**
      65      * The comparator for this sort.
      66      */
      67     private final Comparator<? super T> c;
      68 
      69     /**
      70      * When we get into galloping mode, we stay there until both runs win less
      71      * often than MIN_GALLOP consecutive times.
      72      */
      73     private static final int  MIN_GALLOP = 7;
      74 
      75     /**
      76      * This controls when we get *into* galloping mode.  It is initialized
      77      * to MIN_GALLOP.  The mergeLo and mergeHi methods nudge it higher for
      78      * random data, and lower for highly structured data.
      79      */
      80     private int minGallop = MIN_GALLOP;
      81 
      82     /**
      83      * Maximum initial size of tmp array, which is used for merging.  The array
      84      * can grow to accommodate demand.
      85      *
      86      * Unlike Tim's original C version, we do not allocate this much storage
      87      * when sorting smaller arrays.  This change was required for performance.
      88      */
      89     private static final int INITIAL_TMP_STORAGE_LENGTH = 256;
      90 
      91     /**
      92      * Temp storage for merges. A workspace array may optionally be
      93      * provided in constructor, and if so will be used as long as it
      94      * is big enough.
      95      */
      96     private T[] tmp;
      97     private int tmpBase; // base of tmp array slice
      98     private int tmpLen;  // length of tmp array slice
      99 
     100     /**
     101      * A stack of pending runs yet to be merged.  Run i starts at
     102      * address base[i] and extends for len[i] elements.  It's always
     103      * true (so long as the indices are in bounds) that:
     104      *
     105      *     runBase[i] + runLen[i] == runBase[i + 1]
     106      *
     107      * so we could cut the storage for this, but it's a minor amount,
     108      * and keeping all the info explicit simplifies the code.
     109      */
     110     private int stackSize = 0;  // Number of pending runs on stack
     111     private final int[] runBase;
     112     private final int[] runLen;
     113 
     114     /**
     115      * Creates a TimSort instance to maintain the state of an ongoing sort.
     116      *
     117      * @param a the array to be sorted
     118      * @param c the comparator to determine the order of the sort
     119      * @param work a workspace array (slice)
     120      * @param workBase origin of usable space in work array
     121      * @param workLen usable size of work array
     122      */
     123     private TimSort(T[] a, Comparator<? super T> c, T[] work, int workBase, int workLen) {
     124         this.a = a;
     125         this.c = c;
     126 
     127         // Allocate temp storage (which may be increased later if necessary)
     128         int len = a.length;
     129         // 确定临时数组的长度, 如果低于默认值256的2倍, 则空间大小为原始数组a的长度乘以2, 否则为默认长度
     130         int tlen = (len < 2 * INITIAL_TMP_STORAGE_LENGTH) ?
     131             len >>> 1 : INITIAL_TMP_STORAGE_LENGTH;
     132         if (work == null || workLen < tlen || workBase + tlen > work.length) {
     133             @SuppressWarnings({"unchecked", "UnnecessaryLocalVariable"})
     134             T[] newArray = (T[])java.lang.reflect.Array.newInstance
     135                 (a.getClass().getComponentType(), tlen);
     136             tmp = newArray;
     137             tmpBase = 0;
     138             tmpLen = tlen;
     139         }
     140         else {
     141             // 当指定的work数组不为空, 且workLen大于计算出的tlen的长度, 并且work数组的有效长度大于tlen的长度时, 使用指定的临时数组
     142             tmp = work;
     143             tmpBase = workBase;
     144             tmpLen = workLen;
     145         }
     146 
     147         /*
     148          * Allocate runs-to-be-merged stack (which cannot be expanded).  The
     149          * stack length requirements are described in listsort.txt.  The C
     150          * version always uses the same stack length (85), but this was
     151          * measured to be too expensive when sorting "mid-sized" arrays (e.g.,
     152          * 100 elements) in Java.  Therefore, we use smaller (but sufficiently
     153          * large) stack lengths for smaller arrays.  The "magic numbers" in the
     154          * computation below must be changed if MIN_MERGE is decreased.  See
     155          * the MIN_MERGE declaration above for more information.
     156          * The maximum value of 49 allows for an array up to length
     157          * Integer.MAX_VALUE-4, if array is filled by the worst case stack size
     158          * increasing scenario. More explanations are given in section 4 of:
     159          * http://envisage-project.eu/wp-content/uploads/2015/02/sorting.pdf
     160          */
     161         int stackLen = (len <    120  ?  5 :
     162                         len <   1542  ? 10 :
     163                         len < 119151  ? 24 : 49);
     164         runBase = new int[stackLen];
     165         runLen = new int[stackLen];
     166     }
     167 
     168     /*
     169      * The next method (package private and static) constitutes the
     170      * entire API of this class.
     171      */
     172 
     173     /**
     174      * Sorts the given range, using the given workspace array slice
     175      * for temp storage when possible. This method is designed to be
     176      * invoked from public methods (in class Arrays) after performing
     177      * any necessary array bounds checks and expanding parameters into
     178      * the required forms.
     179      *
     180      * @param a the array to be sorted
     181      * @param lo the index of the first element, inclusive, to be sorted
     182      * @param hi the index of the last element, exclusive, to be sorted
     183      * @param c the comparator to use
     184      * @param work a workspace array (slice)
     185      * @param workBase origin of usable space in work array
     186      * @param workLen usable size of work array
     187      * @since 1.8
     188      */
     189     static <T> void sort(T[] a, int lo, int hi, Comparator<? super T> c,
     190                          T[] work, int workBase, int workLen) {
     191         assert c != null && a != null && lo >= 0 && lo <= hi && hi <= a.length;
     192 
     193         int nRemaining  = hi - lo;        //总共的待排序的元素个数
     194         if (nRemaining < 2)
     195             return;  // Arrays of size 0 and 1 are always sorted
     196 
     197         // If array is small, do a "mini-TimSort" with no merges
     198         // 当元素个数小于7时, 使用折半插入排序, 因为插入排序对于元素个数少的数组更快。
     199         if (nRemaining < MIN_MERGE) {
     200             // initRunLen是初始的有序的元素的个数,而从索引位置lo + initRunLen开始, 后面为乱序的元素。 一种优化方法, lo + initRunLen之前的不用排序了
     201             int initRunLen = countRunAndMakeAscending(a, lo, hi, c);
     202             // 折半插入排序
     203             binarySort(a, lo, hi, lo + initRunLen, c);
     204             return;
     205         }
     206 
     207         /**
     208          * March over the array once, left to right, finding natural runs,
     209          * extending short natural runs to minRun elements, and merging runs
     210          * to maintain stack invariant.
     211          */
     212          // 新建一个TimSort实例, 存储运行时的状态, 比如临时的run(一个run即一个有序的数组)
     213         TimSort<T> ts = new TimSort<>(a, c, work, workBase, workLen);
     214         // 查找一个minRun值, 小于minRun时使用折半插入排序,MIN_MERGE/2 <= minRun <= MIN_MERGE
     215         int minRun = minRunLength(nRemaining);
     216         do {
     217             // Identify next run
     218             // 找到下一个有序的数组的长度
     219             int runLen = countRunAndMakeAscending(a, lo, hi, c);
     220 
     221             // If run is short, extend to min(minRun, nRemaining)
     222             if (runLen < minRun) {
     223                 // 使用折半插入排序扩展数组, 使之达到minRun, 因为元素个数小于minRun, 折半插入排序更快速
     224                 int force = nRemaining <= minRun ? nRemaining : minRun;
     225                 binarySort(a, lo, lo + force, lo + runLen, c);
     226                 runLen = force;
     227             }
     228 
     229             // Push run onto pending-run stack, and maybe merge
     230             // 把这个有序数组压入栈中
     231             ts.pushRun(lo, runLen);
     232             /**
     233             * 判断当 
     234             *    runLen[i - 3] <= runLen[i - 2] + runLen[i - 1]
     235             *        且 runLen[i-3] < runLen[i-1]时
     236              *   或
     237             *    runLen[i - 2] <= runLen[i - 1]
     238             *    合并较小的两个有序数组, 以达到最大的平衡(即每个数组大小基本相同)
     239             */
     240             ts.mergeCollapse();
     241 
     242             // Advance to find next run
     243             lo += runLen;
     244             nRemaining -= runLen;
     245         } while (nRemaining != 0);
     246 
     247         // Merge all remaining runs to complete sort
     248         assert lo == hi;
     249         //合并剩余数组
     250         ts.mergeForceCollapse();
     251         assert ts.stackSize == 1;
     252     }
     253 
     254     /**
     255      * Sorts the specified portion of the specified array using a binary
     256      * insertion sort.  This is the best method for sorting small numbers
     257      * of elements.  It requires O(n log n) compares, but O(n^2) data
     258      * movement (worst case).
     259      *
     260      * If the initial part of the specified range is already sorted,
     261      * this method can take advantage of it: the method assumes that the
     262      * elements from index {@code lo}, inclusive, to {@code start},
     263      * exclusive are already sorted.
     264      *
     265      * @param a the array in which a range is to be sorted
     266      * @param lo the index of the first element in the range to be sorted
     267      * @param hi the index after the last element in the range to be sorted
     268      * @param start the index of the first element in the range that is
     269      *        not already known to be sorted ({@code lo <= start <= hi})
     270      * @param c comparator to used for the sort
     271      */
     272     @SuppressWarnings("fallthrough")
     273     private static <T> void binarySort(T[] a, int lo, int hi, int start,
     274                                        Comparator<? super T> c) {
     275         assert lo <= start && start <= hi;
     276         // start之前的有序元素直接略过
     277         if (start == lo)
     278             start++;
     279         // 从start到hi, 使用折半插入排序进行数组排序
     280         for ( ; start < hi; start++) {
     281             //待插入的元素
     282             T pivot = a[start];
     283 
     284             // Set left (and right) to the index where a[start] (pivot) belongs
     285             // 从left到right, 找到插入位置
     286             int left = lo;
     287             int right = start;
     288             assert left <= right;
     289             /*
     290              * Invariants:
     291              *   pivot >= all in [lo, left).
     292              *   pivot <  all in [right, start).
     293              */
     294             while (left < right) {
     295                 int mid = (left + right) >>> 1;
     296                 if (c.compare(pivot, a[mid]) < 0)
     297                     right = mid;
     298                 else
     299                     left = mid + 1;
     300             }
     301             // left即为最终的插入位置, 因为start>=lo && start <=hi, 所以最终一定会找到一个位置使得pivot>=a[mid], 因此最终一定是pivot >= right, 因此最终为left的位置, 即mid+1
     302             assert left == right;
     303 
     304             /*
     305              * The invariants still hold: pivot >= all in [lo, left) and
     306              * pivot < all in [left, start), so pivot belongs at left.  Note
     307              * that if there are elements equal to pivot, left points to the
     308              * first slot after them -- that's why this sort is stable.
     309              * Slide elements over to make room for pivot.
     310              */
     311             int n = start - left;  // The number of elements to move
     312             // Switch is just an optimization for arraycopy in default case
     313             switch (n) {
     314                 case 2:  a[left + 2] = a[left + 1]; // 如果待移动元素个数小于等于2则直接移动
     315                 case 1:  a[left + 1] = a[left];
     316                          break;
     317                 default: System.arraycopy(a, left, a, left + 1, n);  // 从left开始往后移, 然后把start位置的元素插入到原来的left的位置
     318             }
     319             a[left] = pivot;
     320         }
     321     }
     322 
     323     /**
     324      * Returns the length of the run beginning at the specified position in
     325      * the specified array and reverses the run if it is descending (ensuring
     326      * that the run will always be ascending when the method returns).
     327      *
     328      * A run is the longest ascending sequence with:
     329      *
     330      *    a[lo] <= a[lo + 1] <= a[lo + 2] <= ...
     331      *
     332      * or the longest descending sequence with:
     333      *
     334      *    a[lo] >  a[lo + 1] >  a[lo + 2] >  ...
     335      *
     336      * For its intended use in a stable mergesort, the strictness of the
     337      * definition of "descending" is needed so that the call can safely
     338      * reverse a descending sequence without violating stability.
     339      *
     340      * @param a the array in which a run is to be counted and possibly reversed
     341      * @param lo index of the first element in the run
     342      * @param hi index after the last element that may be contained in the run.
     343               It is required that {@code lo < hi}.
     344      * @param c the comparator to used for the sort
     345      * @return  the length of the run beginning at the specified position in
     346      *          the specified array
     347      */
     348     private static <T> int countRunAndMakeAscending(T[] a, int lo, int hi,
     349                                                     Comparator<? super T> c) {
     350         assert lo < hi;
     351         int runHi = lo + 1;
     352         if (runHi == hi)
     353             return 1;  // lo < hi, 且lo + 1 = hi, 因此是有序且升序的, 直接返回
     354 
     355         // Find end of run, and reverse range if descending
     356         if (c.compare(a[runHi++], a[lo]) < 0) { // Descending
     357             // 如果是降序的, 找到最长的有序降序序列的长度, 并且把序列倒置, 使之升序
     358             while (runHi < hi && c.compare(a[runHi], a[runHi - 1]) < 0)
     359                 runHi++;
     360             reverseRange(a, lo, runHi);
     361         } else {                              // Ascending
     362             // 如果是升序的, 同样找到最长的有序序列的长度
     363             while (runHi < hi && c.compare(a[runHi], a[runHi - 1]) >= 0)
     364                 runHi++;
     365         }
     366 
     367         // 返回有序序列的长度
     368         return runHi - lo;
     369     }
     370 
     371     /**
     372      * Reverse the specified range of the specified array.
     373      *
     374      * @param a the array in which a range is to be reversed
     375      * @param lo the index of the first element in the range to be reversed
     376      * @param hi the index after the last element in the range to be reversed
     377      */
     378     private static void reverseRange(Object[] a, int lo, int hi) {
     379         hi--;
     380         // 首尾倒置
     381         while (lo < hi) {
     382             Object t = a[lo];
     383             a[lo++] = a[hi];
     384             a[hi--] = t;
     385         }
     386     }
     387 
     388     /**
     389      * Returns the minimum acceptable run length for an array of the specified
     390      * length. Natural runs shorter than this will be extended with
     391      * {@link #binarySort}.
     392      *
     393      * Roughly speaking, the computation is:
     394      *
     395      *  If n < MIN_MERGE, return n (it's too small to bother with fancy stuff).
     396      *  Else if n is an exact power of 2, return MIN_MERGE/2.
     397      *  Else return an int k, MIN_MERGE/2 <= k <= MIN_MERGE, such that n/k
     398      *   is close to, but strictly less than, an exact power of 2.
     399      *
     400      * For the rationale, see listsort.txt.
     401      *
     402      * @param n the length of the array to be sorted
     403      * @return the length of the minimum run to be merged
     404      */
     405     private static int minRunLength(int n) {
     406         assert n >= 0;
     407         int r = 0;      // Becomes 1 if any 1 bits are shifted off
     408         while (n >= MIN_MERGE) {
     409             // n&1是判断n是能否被2整除, 如果不能被2整除, 最后一个Bit位一定是1,则1&1为1, r = r | 1 为1
     410             r |= (n & 1);
     411             n >>= 1;
     412         }
     413         return n + r;
     414     }
     415 
     416     /**
     417      * Pushes the specified run onto the pending-run stack.
     418      *
     419      * @param runBase index of the first element in the run
     420      * @param runLen  the number of elements in the run
     421      */
     422      // 把有序序列起始位置和长度放入栈中
     423     private void pushRun(int runBase, int runLen) {
     424         this.runBase[stackSize] = runBase;
     425         this.runLen[stackSize] = runLen;
     426         stackSize++;
     427     }
     428 
     429     /**
     430      * Examines the stack of runs waiting to be merged and merges adjacent runs
     431      * until the stack invariants are reestablished:
     432      *
     433      *     1. runLen[i - 3] > runLen[i - 2] + runLen[i - 1]
     434      *     2. runLen[i - 2] > runLen[i - 1]
     435      *
     436      * This method is called each time a new run is pushed onto the stack,
     437      * so the invariants are guaranteed to hold for i < stackSize upon
     438      * entry to the method.
     439      */
     440      // 判断合并栈顶的三个元素中较小的两个, 或如果第二个元素比第一个小, 则合并, 使栈中所有的序列大小达到近似相等
     441     private void mergeCollapse() {
     442         while (stackSize > 1) {
     443             int n = stackSize - 2;
     444             if (n > 0 && runLen[n-1] <= runLen[n] + runLen[n+1]) {
     445                 if (runLen[n - 1] < runLen[n + 1])
     446                     n--;
     447                 mergeAt(n);
     448             } else if (runLen[n] <= runLen[n + 1]) {
     449                 mergeAt(n);
     450             } else {
     451                 break; // Invariant is established
     452             }
     453         }
     454     }
     455 
     456     /**
     457      * Merges all runs on the stack until only one remains.  This method is
     458      * called once, to complete the sort.
     459      */
     460      // 最后合并栈中所有的序列, 直到最后只剩一个有序序列
     461     private void mergeForceCollapse() {
     462         while (stackSize > 1) {
     463             int n = stackSize - 2;
     464             // 如果runLen[n-1] < runLen[n+1], 则合并较小的较小的runBase[n-1]和runBase[n], 否则合并runBase[n]和runBase[n+1]
     465             if (n > 0 && runLen[n - 1] < runLen[n + 1])
     466                 n--;
     467             mergeAt(n);
     468         }
     469     }
     470 
     471     /**
     472      * Merges the two runs at stack indices i and i+1.  Run i must be
     473      * the penultimate or antepenultimate run on the stack.  In other words,
     474      * i must be equal to stackSize-2 or stackSize-3.
     475      *
     476      * @param i stack index of the first of the two runs to merge
     477      */
     478     private void mergeAt(int i) {
     479         assert stackSize >= 2;
     480         assert i >= 0;
     481         assert i == stackSize - 2 || i == stackSize - 3;
     482 
     483         int base1 = runBase[i];
     484         int len1 = runLen[i];
     485         int base2 = runBase[i + 1];
     486         int len2 = runLen[i + 1];
     487         assert len1 > 0 && len2 > 0;
     488         assert base1 + len1 == base2;
     489 
     490         /*
     491          * Record the length of the combined runs; if i is the 3rd-last
     492          * run now, also slide over the last run (which isn't involved
     493          * in this merge).  The current run (i+1) goes away in any case.
     494          */
     495         runLen[i] = len1 + len2;
     496         // 如果i是栈顶倒数第三个元素, 则最后i+1一定会合进i数组, 因此i+1的位置替换成i+2
     497         if (i == stackSize - 3) {
     498             runBase[i + 1] = runBase[i + 2];
     499             runLen[i + 1] = runLen[i + 2];
     500         }
     501         stackSize--;
     502 
     503         /*
     504          * Find where the first element of run2 goes in run1. Prior elements
     505          * in run1 can be ignored (because they're already in place).
     506          */
     507          // 找到run2的首元素在run1中的位置
     508         int k = gallopRight(a[base2], a, base1, len1, 0, c);
     509         assert k >= 0;
     510         // 忽略k之前的序列, 因为已经有序, 减少比较次数
     511         base1 += k;
     512         len1 -= k;
     513         if (len1 == 0)
     514             return;
     515 
     516         /*
     517          * Find where the last element of run1 goes in run2. Subsequent elements
     518          * in run2 can be ignored (because they're already in place).
     519          */
     520          // 找打run1的尾元素在run2中的位置
     521         len2 = gallopLeft(a[base1 + len1 - 1], a, base2, len2, len2 - 1, c);
     522         assert len2 >= 0;
     523         // len2 == 0, 说明run1和run2已经是一个整体有序的序列了, 直接返回。
     524         if (len2 == 0)
     525             return;
     526 
     527         // Merge remaining runs, using tmp array with min(len1, len2) elements
     528         if (len1 <= len2)
     529             mergeLo(base1, len1, base2, len2);
     530         else
     531             mergeHi(base1, len1, base2, len2);
     532     }
     533 
     534     /**
     535      * Locates the position at which to insert the specified key into the
     536      * specified sorted range; if the range contains an element equal to key,
     537      * returns the index of the leftmost equal element.
     538      *
     539      * @param key the key whose insertion point to search for
     540      * @param a the array in which to search
     541      * @param base the index of the first element in the range
     542      * @param len the length of the range; must be > 0
     543      * @param hint the index at which to begin the search, 0 <= hint < n.
     544      *     The closer hint is to the result, the faster this method will run.
     545      * @param c the comparator used to order the range, and to search
     546      * @return the int k,  0 <= k <= n such that a[b + k - 1] < key <= a[b + k],
     547      *    pretending that a[b - 1] is minus infinity and a[b + n] is infinity.
     548      *    In other words, key belongs at index b + k; or in other words,
     549      *    the first k elements of a should precede key, and the last n - k
     550      *    should follow it.
     551      */
     552     private static <T> int gallopLeft(T key, T[] a, int base, int len, int hint,
     553                                       Comparator<? super T> c) {
     554         assert len > 0 && hint >= 0 && hint < len;
     555         int lastOfs = 0;
     556         int ofs = 1;
     557         if (c.compare(key, a[base + hint]) > 0) {
     558             // 查找区间[base + hint, len], 查找使得a[base+hint+lastOfs] < key <= a[base+hint+ofs]成立的ofs值。
     559             int maxOfs = len - hint;
     560             // 向右查找, 最大可能Ofs为maxOfs-1, 即len - hint - 1, 即a[base + len - 1]
     561             while (ofs < maxOfs && c.compare(key, a[base + hint + ofs]) > 0) {
     562                 // 记录上一次ofs的值, 存到lastOfs中
     563                 lastOfs = ofs;
     564                 // ofs乘以2再加1
     565                 ofs = (ofs << 1) + 1;
     566                 // 整数溢出
     567                 if (ofs <= 0)
     568                     ofs = maxOfs;
     569             }
     570             
     571             // ofs最大值为maxOfs
     572             if (ofs > maxOfs)
     573                 ofs = maxOfs;
     574 
     575             // Make offsets relative to base
     576             // 之前的ofs和lastOfs都是相对于hint位置的, 现在把它重置为相对于base的位置
     577             lastOfs += hint;
     578             ofs += hint;
     579         } else { // key <= a[base + hint]
     580             // 从base+hint向前搜索,查找区间[base, base + hint], 直到找到ofs值使得a[base+hint-ofs] < key <= a[base+hint-lastOfs]
     581             // maxOfs为hint+1, 而ofs < maxOfs, 因此当ofs = maxOfs -1 时, 比较到的最左边的元素为a[base + hint - hint] == a[base]
     582             final int maxOfs = hint + 1;
     583             while (ofs < maxOfs && c.compare(key, a[base + hint - ofs]) <= 0) {
     584                 lastOfs = ofs;
     585                 // ofs乘以2再加1
     586                 ofs = (ofs << 1) + 1;
     587                 // 正整数溢出
     588                 if (ofs <= 0)
     589                     ofs = maxOfs;
     590             }
     591             // 最大为maxOfs
     592             if (ofs > maxOfs)
     593                 ofs = maxOfs;
     594 
     595             // 重置ofs和lastOfs为相对于base的位置索引
     596             int tmp = lastOfs;
     597             lastOfs = hint - ofs;
     598             ofs = hint - tmp;
     599         }
     600         assert -1 <= lastOfs && lastOfs < ofs && ofs <= len;
     601 
     602         /*
     603          * Now a[base+lastOfs] < key <= a[base+ofs], so key belongs somewhere
     604          * to the right of lastOfs but no farther right than ofs.  Do a binary
     605          * search, with invariant a[base + lastOfs - 1] < key <= a[base + ofs].
     606          */
     607         lastOfs++;
     608         // 查找准确位置
     609         while (lastOfs < ofs) {
     610             // 中间位置
     611             int m = lastOfs + ((ofs - lastOfs) >>> 1);
     612 
     613             if (c.compare(key, a[base + m]) > 0)
     614                 lastOfs = m + 1;  // a[base + m] < key
     615             else
     616                 ofs = m;          // key <= a[base + m]
     617         }
     618         assert lastOfs == ofs;    // so a[base + ofs - 1] < key <= a[base + ofs]
     619         return ofs;
     620     }
     621 
     622     /**
     623      * Like gallopLeft, except that if the range contains an element equal to
     624      * key, gallopRight returns the index after the rightmost equal element.
     625      *
     626      * @param key the key whose insertion point to search for
     627      * @param a the array in which to search
     628      * @param base the index of the first element in the range
     629      * @param len the length of the range; must be > 0
     630      * @param hint the index at which to begin the search, 0 <= hint < n.
     631      *     The closer hint is to the result, the faster this method will run.
     632      * @param c the comparator used to order the range, and to search
     633      * @return the int k,  0 <= k <= n such that a[b + k - 1] <= key < a[b + k]
     634      */
     635     private static <T> int gallopRight(T key, T[] a, int base, int len,
     636                                        int hint, Comparator<? super T> c) {
     637         assert len > 0 && hint >= 0 && hint < len;
     638 
     639         int ofs = 1;
     640         int lastOfs = 0;
     641         if (c.compare(key, a[base + hint]) < 0) {
     642             // 从base + hint位置向前搜索区间[base, base + hint], 使得a[b+hint - ofs] <= key < a[b+hint - lastOfs]
     643             int maxOfs = hint + 1;
     644             while (ofs < maxOfs && c.compare(key, a[base + hint - ofs]) < 0) {
     645                 // 记录上次查找位置
     646                 lastOfs = ofs;
     647                 // 乘以2 加1
     648                 ofs = (ofs << 1) + 1;
     649                 // 正整数溢出
     650                 if (ofs <= 0)
     651                     ofs = maxOfs;
     652             }
     653             // 最大为maxOfs
     654             if (ofs > maxOfs)
     655                 ofs = maxOfs;
     656 
     657             // 重置ofs和lastOfs为相对于base的位置索引
     658             int tmp = lastOfs;
     659             lastOfs = hint - ofs;
     660             ofs = hint - tmp;
     661         } else { // a[b + hint] <= key
     662             // 搜索区间[base + hint, base + len -1]使得a[b+hint + lastOfs] <= key < a[b+hint + ofs]
     663             int maxOfs = len - hint;
     664             while (ofs < maxOfs && c.compare(key, a[base + hint + ofs]) >= 0) {
     665                 lastOfs = ofs;
     666                 ofs = (ofs << 1) + 1;
     667                 // 正整数溢出
     668                 if (ofs <= 0)  
     669                     ofs = maxOfs;
     670             }
     671             if (ofs > maxOfs)
     672                 ofs = maxOfs;
     673 
     674             // 重置ofs和lastOfs为相对于base的位置索引
     675             lastOfs += hint;
     676             ofs += hint;
     677         }
     678         assert -1 <= lastOfs && lastOfs < ofs && ofs <= len;
     679 
     680         lastOfs++;
     681         // 查找key的准确位置
     682         while (lastOfs < ofs) {
     683             int m = lastOfs + ((ofs - lastOfs) >>> 1);
     684 
     685             if (c.compare(key, a[base + m]) < 0)
     686                 ofs = m;          // key < a[b + m]
     687             else
     688                 lastOfs = m + 1;  // a[b + m] <= key
     689         }
     690         // 最终会找到m使得k >= a[base + m], 而此时lastOfs == ofs且lastOfs = m +1, 则ofs = m +1, 因此a[base + ofs] > k >= a[base + ofs -1], ofs即m+1, ofs - 1即为m, 因此ofs位置的值大于key
     691         assert lastOfs == ofs;    // so a[b + ofs - 1] <= key < a[b + ofs]
     692         return ofs;
     693     }
     694 
     695     /**
     696     *基于以上gallopRight方法最后查找key的索引的解释, 因此run1的第一个元素一定大于run2的第一个元素,     *而run2中run1最后一个元素所在索引位置之后的值也被忽略掉, 因此run1的最后一个元素大于run2中的所有元素的值。*/
     697     
     698     
     699     /**
     700      * Merges two adjacent runs in place, in a stable fashion.  The first
     701      * element of the first run must be greater than the first element of the
     702      * second run (a[base1] > a[base2]), and the last element of the first run
     703      * (a[base1 + len1-1]) must be greater than all elements of the second run.
     704      *
     705      * For performance, this method should be called only when len1 <= len2;
     706      * its twin, mergeHi should be called if len1 >= len2.  (Either method
     707      * may be called if len1 == len2.)
     708      *
     709      * @param base1 index of first element in first run to be merged
     710      * @param len1  length of first run to be merged (must be > 0)
     711      * @param base2 index of first element in second run to be merged
     712      *        (must be aBase + aLen)
     713      * @param len2  length of second run to be merged (must be > 0)
     714      */
     715     private void mergeLo(int base1, int len1, int base2, int len2) {
     716         assert len1 > 0 && len2 > 0 && base1 + len1 == base2;
     717 
     718         // Copy first run into temp array
     719         T[] a = this.a; // For performance
     720         T[] tmp = ensureCapacity(len1);
     721         int cursor1 = tmpBase; // Indexes into tmp array
     722         int cursor2 = base2;   // Indexes int a
     723         // 目标位置从base1的索引开始, 因为base1在base2之前, 下面会将base1的内容放入临时数组, 这样run1中的内容就可以覆盖了
     724         int dest = base1;      // Indexes int a
     725         // 把第一个序列的内容放入临时数组tmp中
     726         System.arraycopy(a, base1, tmp, cursor1, len1);
     727 
     728         // Move first element of second run and deal with degenerate cases
     729         // 因为run1的第一个元素大于run2的第一个元素, 因此将run2的第一个元素先放进
     730         a[dest++] = a[cursor2++];
     731         // 如果run2只有一个元素, 则将run1中剩余的元素放入正确位置后返回
     732         if (--len2 == 0) {
     733             System.arraycopy(tmp, cursor1, a, dest, len1);
     734             return;
     735         }
     736         // 如果run1只有一个元素, 因为run1的最后一个元素大于run2中的所有元素, 因此先将run2中的元素放入正确位置, 然后将run1的唯一的一个元素放入最后一个位置, 然后返回
     737         if (len1 == 1) {
     738             System.arraycopy(a, cursor2, a, dest, len2);
     739             a[dest + len2] = tmp[cursor1]; // Last elt of run 1 to end of merge
     740             return;
     741         }
     742 
     743         Comparator<? super T> c = this.c;  // Use local variable for performance
     744         int minGallop = this.minGallop;    //  "    "       "     "      "
     745     outer:
     746         while (true) {
     747             int count1 = 0; // Number of times in a row that first run won
     748             int count2 = 0; // Number of times in a row that second run won
     749 
     750             /*
     751              * Do the straightforward thing until (if ever) one run starts
     752              * winning consistently.
     753              */
     754             do {
     755                 assert len1 > 1 && len2 > 0;
     756                 if (c.compare(a[cursor2], tmp[cursor1]) < 0) {
     757                     a[dest++] = a[cursor2++];
     758                     count2++;
     759                     count1 = 0;
     760                     if (--len2 == 0)
     761                         break outer;
     762                 } else {
     763                     a[dest++] = tmp[cursor1++];
     764                     count1++;
     765                     count2 = 0;
     766                     if (--len1 == 1)
     767                         break outer;
     768                 }
     769                 // 当每个序列中的连续放入目标位置的元素个数小于minGallop时, 这样分别拷贝就可以了
     770             } while ((count1 | count2) < minGallop);
     771 
     772             /*
     773              * One run is winning so consistently that galloping may be a
     774              * huge win. So try that, and continue galloping until (if ever)
     775              * neither run appears to be winning consistently anymore.
     776              */
     777              // 因为两个run序列的大小是近似相等的, 如果一个序列连续超过minGallop个数的元素被放入目标位置, 则另一个有接近大小的连续序列等待被放入正确位置,切换成Gallopping模式
     778             do {
     779                 assert len1 > 1 && len2 > 0;
     780                 //查找run1第一个大于run2中第一个元素的元素的位置索引
     781                 count1 = gallopRight(a[cursor2], tmp, cursor1, len1, 0, c);
     782                 if (count1 != 0) {
     783                     // run1中count1之前的元素全部放入目标序列
     784                     System.arraycopy(tmp, cursor1, a, dest, count1);
     785                     // 移动索引位置
     786                     dest += count1;
     787                     cursor1 += count1;
     788                     len1 -= count1;
     789                     if (len1 <= 1) // len1 == 1 || len1 == 0
     790                         break outer;
     791                 }
     792                 // 移动run2的第一个元素到目标序列中
     793                 a[dest++] = a[cursor2++];
     794                 // 如果run2中没有其他元素则跳出
     795                 if (--len2 == 0)
     796                     break outer;
     797 
     798                 // 查找run2中第一个小于等于run1当前元素的元素的位置索引
     799                 count2 = gallopLeft(tmp[cursor1], a, cursor2, len2, 0, c);
     800                 if (count2 != 0) {
     801                     // 拷贝count2之后的元素到目标序列
     802                     System.arraycopy(a, cursor2, a, dest, count2);
     803                     dest += count2;
     804                     cursor2 += count2;
     805                     len2 -= count2;
     806                     // run2中没有其他元素则跳出
     807                     if (len2 == 0)
     808                         break outer;
     809                 }
     810                 
     811                 // 此时run2中的第一个元素大于等于run1中的第一个元素, 拷贝run1中的第一个元素到目标序列
     812                 a[dest++] = tmp[cursor1++];
     813                 // 如果run1中只有一个元素则跳出
     814                 if (--len1 == 1)
     815                     break outer;
     816                 // 动态调整minGallop的值
     817                 minGallop--;
     818             } while (count1 >= MIN_GALLOP | count2 >= MIN_GALLOP);
     819             if (minGallop < 0)
     820                 minGallop = 0;
     821             // 调整minGallop的值, 使得在有序序列不多的情况下不用Gallopping模式
     822             minGallop += 2;  // Penalize for leaving gallop mode
     823         }  // End of "outer" loop
     824         this.minGallop = minGallop < 1 ? 1 : minGallop;  // Write back to field
     825 
     826         // run1中只有一个元素
     827         if (len1 == 1) {
     828             assert len2 > 0;
     829             System.arraycopy(a, cursor2, a, dest, len2);
     830             a[dest + len2] = tmp[cursor1]; //  Last elt of run 1 to end of merge
     831         } else if (len1 == 0) {
     832             // 因为run1中的最后一个元素大于run2中的所有元素, 因此这种情况不存在
     833             throw new IllegalArgumentException(
     834                 "Comparison method violates its general contract!");
     835         } else {
     836             // run2中已经没有元素
     837             assert len2 == 0;
     838             assert len1 > 1;
     839             System.arraycopy(tmp, cursor1, a, dest, len1);
     840         }
     841     }
     842 
     843     /**
     844      * Like mergeLo, except that this method should be called only if
     845      * len1 >= len2; mergeLo should be called if len1 <= len2.  (Either method
     846      * may be called if len1 == len2.)
     847      *
     848      * @param base1 index of first element in first run to be merged
     849      * @param len1  length of first run to be merged (must be > 0)
     850      * @param base2 index of first element in second run to be merged
     851      *        (must be aBase + aLen)
     852      * @param len2  length of second run to be merged (must be > 0)
     853      */
     854     private void mergeHi(int base1, int len1, int base2, int len2) {
     855         assert len1 > 0 && len2 > 0 && base1 + len1 == base2;
     856 
     857         // Copy second run into temp array
     858         T[] a = this.a; // For performance
     859         T[] tmp = ensureCapacity(len2);
     860         int tmpBase = this.tmpBase;
     861         // 将run2中的所有元素放入临时数组tmp中
     862         System.arraycopy(a, base2, tmp, tmpBase, len2);
     863 
     864         int cursor1 = base1 + len1 - 1;  // Indexes into a
     865         int cursor2 = tmpBase + len2 - 1; // Indexes into tmp array
     866         // 从后往前插入元素
     867         int dest = base2 + len2 - 1;     // Indexes into a
     868 
     869         // Move last element of first run and deal with degenerate cases
     870         // run1的最后一个元素导入目标位置
     871         a[dest--] = a[cursor1--];
     872         // 如果run1中只有一个元素, 将run2中的剩余元素放入目标位置(从后往前)
     873         if (--len1 == 0) {
     874             System.arraycopy(tmp, tmpBase, a, dest - (len2 - 1), len2);
     875             return;
     876         }
     877         if (len2 == 1) {
     878             // run2中只有一个元素, 因为run1的第一个元素大于run2的第一个元素, 因此, run2中唯一的一个元素小于run1中所有的元素, 因此将run1中的元素全部放入目标位置, 最后将唯一的run2中的一个元素放入第一个位置
     879             dest -= len1;
     880             cursor1 -= len1;
     881             System.arraycopy(a, cursor1 + 1, a, dest + 1, len1);
     882             a[dest] = tmp[cursor2];
     883             return;
     884         }
     885 
     886         Comparator<? super T> c = this.c;  // Use local variable for performance
     887         int minGallop = this.minGallop;    //  "    "       "     "      "
     888     outer:
     889         while (true) {
     890             int count1 = 0; // Number of times in a row that first run won
     891             int count2 = 0; // Number of times in a row that second run won
     892 
     893             /*
     894              * Do the straightforward thing until (if ever) one run
     895              * appears to win consistently.
     896              */
     897             do {
     898                 assert len1 > 0 && len2 > 1;
     899                 if (c.compare(tmp[cursor2], a[cursor1]) < 0) {
     900                        // 从后往前放入目标位置
     901                     a[dest--] = a[cursor1--];
     902                     count1++;
     903                     count2 = 0;
     904                     // run1中没有了元素
     905                     if (--len1 == 0)
     906                         break outer;
     907                 } else {
     908                     a[dest--] = tmp[cursor2--];
     909                     count2++;
     910                     count1 = 0;
     911                     // run2中只有一个剩余元素
     912                     if (--len2 == 1)
     913                         break outer;
     914                 }
     915             } while ((count1 | count2) < minGallop);
     916 
     917             /*
     918              * One run is winning so consistently that galloping may be a
     919              * huge win. So try that, and continue galloping until (if ever)
     920              * neither run appears to be winning consistently anymore.
     921              */
     922             do {
     923                 assert len1 > 0 && len2 > 1;
     924                 // 找到大于run2当前位置的元素的run1中元素, 因为是从后往前查找, 因此找到的位置比如k1,k1之后的所有元素大于run1, run2中的剩余所有元素
     925                 count1 = len1 - gallopRight(tmp[cursor2], a, base1, len1, len1 - 1, c);
     926                 if (count1 != 0) {
     927                     dest -= count1;
     928                     cursor1 -= count1;
     929                     len1 -= count1;
     930                     // 拷贝run1中的大的元素
     931                     System.arraycopy(a, cursor1 + 1, a, dest + 1, count1);
     932                     // run1中没有元素, 跳出
     933                     if (len1 == 0)
     934                         break outer;
     935                 }
     936                 // run2的当前元素拷贝到目标位置
     937                 a[dest--] = tmp[cursor2--];
     938                 if (--len2 == 1)
     939                     break outer;
     940 
     941                 // 找到run2中大于等于run1当前元素的元素的位置索引比如K2, 则k2之后的所有元素大于run1, run2中的剩余元素
     942                 count2 = len2 - gallopLeft(a[cursor1], tmp, tmpBase, len2, len2 - 1, c);
     943                 if (count2 != 0) {
     944                     dest -= count2;
     945                     cursor2 -= count2;
     946                     len2 -= count2;
     947                     System.arraycopy(tmp, cursor2 + 1, a, dest + 1, count2);
     948                     if (len2 <= 1)  // len2 == 1 || len2 == 0
     949                         break outer;
     950                 }
     951                 // 拷贝run1的当前元素到目标位置, 因为a[cursior1]大于等于run2中的剩余元素
     952                 a[dest--] = a[cursor1--];
     953                 if (--len1 == 0)
     954                     break outer;
     955                 minGallop--;
     956             } while (count1 >= MIN_GALLOP | count2 >= MIN_GALLOP);
     957             if (minGallop < 0)
     958                 minGallop = 0;
     959             minGallop += 2;  // Penalize for leaving gallop mode
     960         }  // End of "outer" loop
     961         this.minGallop = minGallop < 1 ? 1 : minGallop;  // Write back to field
     962 
     963         // run2中只有一个元素
     964         if (len2 == 1) {
     965             assert len1 > 0;
     966             dest -= len1;
     967             cursor1 -= len1;
     968             // 拷贝run1中的所有元素到目标位置
     969             System.arraycopy(a, cursor1 + 1, a, dest + 1, len1);
     970             // run2的最后一个元素放入第一个位置
     971             a[dest] = tmp[cursor2];  // Move first elt of run2 to front of merge
     972         } else if (len2 == 0) {
     973             // 因为run2的第一个元素小于run1, run2中的所有元素, 因此run2不可能最后为空
     974             throw new IllegalArgumentException(
     975                 "Comparison method violates its general contract!");
     976         } else {
     977             assert len1 == 0;
     978             assert len2 > 0;
     979             // 拷贝run2中的剩余元素
     980             System.arraycopy(tmp, tmpBase, a, dest - (len2 - 1), len2);
     981         }
     982     }
     983 
     984     /**
     985      * Ensures that the external array tmp has at least the specified
     986      * number of elements, increasing its size if necessary.  The size
     987      * increases exponentially to ensure amortized linear time complexity.
     988      *
     989      * @param minCapacity the minimum required capacity of the tmp array
     990      * @return tmp, whether or not it grew
     991      */
     992     private T[] ensureCapacity(int minCapacity) {
     993         if (tmpLen < minCapacity) {
     994             // Compute smallest power of 2 > minCapacity
     995             int newSize = minCapacity;
     996             newSize |= newSize >> 1;
     997             newSize |= newSize >> 2;
     998             newSize |= newSize >> 4;
     999             newSize |= newSize >> 8;
    1000             newSize |= newSize >> 16;
    1001             newSize++;
    1002 
    1003             if (newSize < 0) // Not bloody likely!
    1004                 newSize = minCapacity;
    1005             else
    1006                 newSize = Math.min(newSize, a.length >>> 1);
    1007 
    1008             @SuppressWarnings({"unchecked", "UnnecessaryLocalVariable"})
    1009             T[] newArray = (T[])java.lang.reflect.Array.newInstance
    1010                 (a.getClass().getComponentType(), newSize);
    1011             tmp = newArray;
    1012             tmpLen = newSize;
    1013             tmpBase = 0;
    1014         }
    1015         return tmp;
    1016     }
    1017 }
  • 相关阅读:
    带密钥的sha1加密
    单调队列优化和二进制优化的多重背包模板
    HDU6424 Rikka with Time Complexity
    HDU6415 Rikka with Nash Equilibrium
    BZOJ1012: [JSOI2008]最大数maxnumber
    BZOJ2660: [Beijing wc2012]最多的方案
    读入优化和输出优化模板
    BZOJ1089: [SCOI2003]严格n元树
    2018 “百度之星”程序设计大赛
    JavaScript事件代理和委托(Delegation)
  • 原文地址:https://www.cnblogs.com/helloz/p/11610660.html
Copyright © 2020-2023  润新知