• ELK收集Kubernetes平台日志


    ELK收集Kubernetes平台日志

    如果把日志保存在容器内部或通过数据卷挂载在宿主机上还是保持在远程存储上,比如保存在容器内部,也就是说没有经过任何改动,自是在容器里原封不动的启动了,起来之后日志还是和原来一样保持在原来的目录里,但是这个容器是会经常的删除,销毁和创建是常态。因此我们需要一种持久化的保存日志方式。

    如果日志还是放在容器内部,会随着容器删除而被删除

    容器数量很多,按照传统的查看日志方式变得不太现实

    容器本身特性

    容器密集,采集目标多:容器日志输出到控制台,docker本身提供了一种能力来采集日志了。如果落地到本地文件目前还没有一种好的采集方式

    容器的弹性伸缩:新扩容的pod属性信息(日志文件路径,日志源)可能会发送变化

    收集那些日志

    K8S系统的组件日志和应用程序日志,组件日志就是打到宿主机的固定文件和传统的日志收集一样,应用程序日志又分为了标准输出和日志文件。这里以nginx和tomcat说明下这两种方式

    用docker先运行一个nginx

    [root@k8s02 ~]# docker run -d nginx
    feed659283b4adb5d24f0bc736ed83be8130ecdbd52d9cc2a7424ede108d0de3
    [root@k8s02 ~]# 
    

    测试访问容器

    [root@k8s02 ~]# curl 172.17.0.2
    

    查看nginx日志

    [root@k8s02 ~]# docker logs determined_feynman
    /docker-entrypoint.sh: /docker-entrypoint.d/ is not empty, will attempt to perform configuration
    /docker-entrypoint.sh: Looking for shell scripts in /docker-entrypoint.d/
    /docker-entrypoint.sh: Launching /docker-entrypoint.d/10-listen-on-ipv6-by-default.sh
    10-listen-on-ipv6-by-default.sh: Getting the checksum of /etc/nginx/conf.d/default.conf
    10-listen-on-ipv6-by-default.sh: Enabled listen on IPv6 in /etc/nginx/conf.d/default.conf
    /docker-entrypoint.sh: Launching /docker-entrypoint.d/20-envsubst-on-templates.sh
    /docker-entrypoint.sh: Configuration complete; ready for start up
    172.17.0.1 - - [04/Jun/2020:14:38:24 +0000] "GET / HTTP/1.1" 200 612 "-" "curl/7.29.0" "-"
    [root@k8s02 ~]# 
    
    

    这是docker将这个日志进行了接管,这实际是控制台的日志,进入nginx看看日志

    [root@k8s02 ~]# docker exec -it determined_feynman /bin/bash
    root@feed659283b4:/# cd /var/log/nginx/
    root@feed659283b4:/var/log/nginx# ls -l 
    total 0
    lrwxrwxrwx 1 root root 11 Jun  2 00:35 access.log -> /dev/stdout
    lrwxrwxrwx 1 root root 11 Jun  2 00:35 error.log -> /dev/stderr
    root@feed659283b4:/var/log/nginx# 
    
    

    官方在写dockerfile时将这两个日志文件给输出到了控制台,就是标准输出和错误输出都输出到控制台中,控制台的日志都可以通过docker logs 访问到。

    用docker运行一个tomcat

    [root@k8s03 ~]# docker run -d tomcat
    40c6b2d99726544c93973bd42297ce14d1e820979a0463fb4a99d1e3a493a579
    [root@k8s03 ~]# 
    

    进入到tomcat里面

    [root@k8s03 ~]# docker exec -it flamboyant_kepler /bin/bash
    root@40c6b2d99726:/usr/local/tomcat# cd logs/
    root@40c6b2d99726:/usr/local/tomcat/logs# ls -l
    total 8
    -rw-r----- 1 root root 4790 Jun  4 14:36 catalina.2020-06-04.log
    -rw-r----- 1 root root    0 Jun  4 14:36 host-manager.2020-06-04.log
    -rw-r----- 1 root root    0 Jun  4 14:36 localhost.2020-06-04.log
    -rw-r----- 1 root root    0 Jun  4 14:36 localhost_access_log.2020-06-04.txt
    -rw-r----- 1 root root    0 Jun  4 14:36 manager.2020-06-04.log
    root@40c6b2d99726:/usr/local/tomcat/logs# 
    

    会发现是有日志的,tomcat产生的文件有一部分会产生到控制台,一部分落到本地的文件中,他没有将这些日志做重定向,而是存在于容器内部的,如果容器删除的话,日志也会删除。

    总结

    根据以上镜像的情况,归出了两种日志体现,一个是标准输出,一个是日志输出

    如果使用标准的日志输出,其实docker已经涉及到这一块了,比如容器→docker→文件系统,日志驱动在容器通过控制台日志输出由docker接管了,可以docker logs可以看到,执行docker logs时是调用了守护进程,守护进程读取的这个接管的日志从本地文件系统中读取这个日志,日志路径在一下位置

    [root@k8s02 ~]# cd /var/lib/docker/containers/d8ab1b4e6a01d9124ad1d07bf852bf69e2768ecdc5dd0a644e97518537ea2932/
    [root@k8s02 d8ab1b4e6a01d9124ad1d07bf852bf69e2768ecdc5dd0a644e97518537ea2932]# ll
    total 16
    drwx------ 2 root root    6 Jun  4 22:41 checkpoints
    -rw------- 1 root root 6801 Jun  4 22:41 config.v2.json
    -rw-r----- 1 root root  666 Jun  4 22:41 d8ab1b4e6a01d9124ad1d07bf852bf69e2768ecdc5dd0a644e97518537ea2932-json.log
    -rw-r--r-- 1 root root 2153 Jun  4 22:41 hostconfig.json
    drwx------ 2 root root    6 Jun  4 22:41 mounts
    

    可以看到有一个为容器ID开头的json文件,实际上它是从这里来读取日志响应到控制台的,docker还支持fluned、syslog等采集工具

    如果使用日志文件写到容器中比如tomcat这样的,一般的做法通过 docker bind mount或volumes将他挂载到宿主机上,去采集宿主机的目录。

    ELK日志收集的三个方案

    大致分为采集阶段→数据存储→分析→展示

    方式 优点 缺点
    Node上部署一个日志收集程序 每个Nodej仅需部署一个日志收集程序,资源消耗少,对应用无侵入 应用程序日志如果写到标准输出和标准错误输出,那就不支持多行日志。
    Pod中附加专用日志收集的容器 低耦合 每个Pod启动一个日志收集代理,增加资源消耗,并增加运维维护成本
    应用程序直接推送日志 无需额外收集工具 侵入应用,增加应用复杂度

    Node上部署一个日志收集程序

    DaemonSet方式部署日志收集程序,对本节点/var/log/pods//var/lib/docker/containers/两个目录下的日志进行收集

    Pod中附加专用日志收集的容器

    每个运行应用程序的Pod中增加一个日志收集容器,使用emtyDir共享日志目录让日志收集程序读取到

    应用程序直接推送日志

    应用程序直接将日志推送到远程存储上,不经过docker的管理和kubernetes的管理

    在K8S中部署ELK

    部署elasticsearch

    [root@k8s01 yml]# cat elasticsearch.yaml 
    apiVersion: apps/v1
    kind: StatefulSet
    metadata:
      name: elasticsearch
      namespace: kube-system
      labels:
        k8s-app: elasticsearch
    spec:
      serviceName: elasticsearch
      selector:
        matchLabels:
          k8s-app: elasticsearch
      template:
        metadata:
          labels:
            k8s-app: elasticsearch
        spec:
          containers:
          - image: elasticsearch:7.5.0
            name: elasticsearch
            resources:
              limits:
                cpu: 1
                memory: 2Gi
              requests:
                cpu: 0.5 
                memory: 500Mi
            env:
              - name: "discovery.type"
                value: "single-node"
              - name: ES_JAVA_OPTS
                value: "-Xms512m -Xmx2g" 
            ports:
            - containerPort: 9200
              name: db
              protocol: TCP
            volumeMounts:
            - name: elasticsearch-data
              mountPath: /usr/share/elasticsearch/data
      volumeClaimTemplates:
      - metadata:
          name: elasticsearch-data
        spec:
          storageClassName: "managed-nfs-storage"
          accessModes: [ "ReadWriteOnce" ]
          resources:
            requests:
              storage: 20Gi
    
    ---
    
    apiVersion: v1
    kind: Service
    metadata:
      name: elasticsearch
      namespace: kube-system
    spec:
      clusterIP: None
      ports:
      - port: 9200
        protocol: TCP
        targetPort: db
      selector:
        k8s-app: elasticsearch
    
    

    开始创建

    [root@k8s01 yml]# kubectl create -f elasticsearch.yaml 
    statefulset.apps/elasticsearch created
    service/elasticsearch created
    [root@k8s01 yml]# kubectl get pods -n kube-system elasticsearch-0 
    NAME              READY   STATUS    RESTARTS   AGE
    elasticsearch-0   1/1     Running   0          4m50s
    [root@k8s01 yml]# 
    
    

    部署kibana

    [root@k8s01 yml]# cat kibana.yaml
    apiVersion: apps/v1
    kind: Deployment
    metadata:
      name: kibana
      namespace: kube-system
      labels:
        k8s-app: kibana
    spec:
      replicas: 1
      selector:
        matchLabels:
          k8s-app: kibana
      template:
        metadata:
          labels:
            k8s-app: kibana
        spec:
          containers:
          - name: kibana
            image: kibana:7.5.0
            resources:
              limits:
                cpu: 1
                memory: 500Mi
              requests:
                cpu: 0.5 
                memory: 200Mi
            env:
              - name: ELASTICSEARCH_HOSTS
                value: http://elasticsearch-0.elasticsearch.kube-system:9200
              - name: I18N_LOCALE
                value: zh-CN
            ports:
            - containerPort: 5601
              name: ui
              protocol: TCP
    
    ---
    apiVersion: v1
    kind: Service
    metadata:
      name: kibana
      namespace: kube-system
    spec:
      type: NodePort
      ports:
      - port: 5601
        protocol: TCP
        targetPort: ui
        nodePort: 30601
      selector:
        k8s-app: kibana
    

    开始创建

    [root@k8s01 yml]# kubectl create -f kibana.yaml 
    deployment.apps/kibana created
    service/kibana created
    [root@k8s01 yml]# kubectl get pods -n kube-system kibana-6cd7b9d48b-jrx79 
    NAME                      READY   STATUS    RESTARTS   AGE
    kibana-6cd7b9d48b-jrx79   1/1     Running   0          3m3s
    [root@k8s01 yml]# kubectl get svc -n kube-system kibana 
    NAME     TYPE       CLUSTER-IP   EXTERNAL-IP   PORT(S)          AGE
    kibana   NodePort   10.0.0.132   <none>        5601:30601/TCP   4m17s
    [root@k8s01 yml]# 
    

    filebeat采集标准输出日志

    filebeat支持动态的获取容器的日志

    [root@k8s01 yml]# cat filebeat-kubernetes.yaml 
    ---
    apiVersion: v1
    kind: ConfigMap
    metadata:
      name: filebeat-config
      namespace: kube-system
      labels:
        k8s-app: filebeat
    data:
      filebeat.yml: |-
        filebeat.config:
          inputs:
            # Mounted `filebeat-inputs` configmap:
            path: ${path.config}/inputs.d/*.yml
            # Reload inputs configs as they change:
            reload.enabled: false
          modules:
            path: ${path.config}/modules.d/*.yml
            # Reload module configs as they change:
            reload.enabled: false
    
        # To enable hints based autodiscover, remove `filebeat.config.inputs` configuration and uncomment this:
        #filebeat.autodiscover:
        #  providers:
        #    - type: kubernetes
        #      hints.enabled: true
    
        output.elasticsearch:
          hosts: ['${ELASTICSEARCH_HOST:elasticsearch}:${ELASTICSEARCH_PORT:9200}']
    ---
    apiVersion: v1
    kind: ConfigMap
    metadata:
      name: filebeat-inputs
      namespace: kube-system
      labels:
        k8s-app: filebeat
    data:
      kubernetes.yml: |-
        - type: docker
          containers.ids:
          - "*"
          processors:
            - add_kubernetes_metadata:
                in_cluster: true
    ---
    apiVersion: apps/v1 
    kind: DaemonSet
    metadata:
      name: filebeat
      namespace: kube-system
      labels:
        k8s-app: filebeat
    spec:
      selector:
        matchLabels:
          k8s-app: filebeat
      template:
        metadata:
          labels:
            k8s-app: filebeat
        spec:
          serviceAccountName: filebeat
          terminationGracePeriodSeconds: 30
          containers:
          - name: filebeat
            image: elastic/filebeat:7.5.0
            args: [
              "-c", "/etc/filebeat.yml",
              "-e",
            ]
            env:
            - name: ELASTICSEARCH_HOST
              value: elasticsearch-0.elasticsearch.kube-system 
            - name: ELASTICSEARCH_PORT
              value: "9200"
            securityContext:
              runAsUser: 0
              # If using Red Hat OpenShift uncomment this:
              #privileged: true
            resources:
              limits:
                memory: 200Mi
              requests:
                cpu: 100m
                memory: 100Mi
            volumeMounts:
            - name: config
              mountPath: /etc/filebeat.yml
              readOnly: true
              subPath: filebeat.yml
            - name: inputs
              mountPath: /usr/share/filebeat/inputs.d
              readOnly: true
            - name: data
              mountPath: /usr/share/filebeat/data
            - name: varlibdockercontainers
              mountPath: /var/lib/docker/containers
              readOnly: true
          volumes:
          - name: config
            configMap:
              defaultMode: 0600
              name: filebeat-config
          - name: varlibdockercontainers
            hostPath:
              path: /var/lib/docker/containers
          - name: inputs
            configMap:
              defaultMode: 0600
              name: filebeat-inputs
          # data folder stores a registry of read status for all files, so we don't send everything again on a Filebeat pod restart
          - name: data
            hostPath:
              path: /var/lib/filebeat-data
              type: DirectoryOrCreate
    ---
    apiVersion: rbac.authorization.k8s.io/v1beta1
    kind: ClusterRoleBinding
    metadata:
      name: filebeat
    subjects:
    - kind: ServiceAccount
      name: filebeat
      namespace: kube-system
    roleRef:
      kind: ClusterRole
      name: filebeat
      apiGroup: rbac.authorization.k8s.io
    ---
    apiVersion: rbac.authorization.k8s.io/v1beta1
    kind: ClusterRole
    metadata:
      name: filebeat
      labels:
        k8s-app: filebeat
    rules:
    - apiGroups: [""] # "" indicates the core API group
      resources:
      - namespaces
      - pods
      verbs:
      - get
      - watch
      - list
    ---
    apiVersion: v1
    kind: ServiceAccount
    metadata:
      name: filebeat
      namespace: kube-system
      labels:
        k8s-app: filebeat
    

    这里指定了es的路径

        output.elasticsearch:
          hosts: ['${ELASTICSEARCH_HOST:elasticsearch}:${ELASTICSEARCH_PORT:9200}']
    

    这里是一个处理器,他会自动的为日志添加k8s属性。传统配置日志采集工具重要的参数是什么呢?日志路径、日志源、写正则,格式化日志。add_kubernetes_metadata这个处理器可以自动的为k8s添加日志属性信息

    data:
      kubernetes.yml: |-
        - type: docker
          containers.ids:
          - "*"
          processors:
            - add_kubernetes_metadata:
                in_cluster: true
    

    这里使用了hostpath挂载了docker的工作目录

          - name: varlibdockercontainers
            hostPath:
              path: /var/lib/docker/containers
    

    开始创建

    [root@k8s01 yml]# kubectl apply -f filebeat-kubernetes.yaml 
    configmap/filebeat-config created
    configmap/filebeat-inputs created
    daemonset.apps/filebeat created
    clusterrolebinding.rbac.authorization.k8s.io/filebeat created
    clusterrole.rbac.authorization.k8s.io/filebeat created
    serviceaccount/filebeat created
    [root@k8s01 yml]# kubectl get pods -n kube-system 
    NAME                          READY   STATUS    RESTARTS   AGE
    coredns-6d8cfdd59d-cbhzg      1/1     Running   0          51m
    elasticsearch-0               1/1     Running   0          42m
    filebeat-bfd9t                1/1     Running   0          3m15s
    filebeat-gbf5f                1/1     Running   0          3m15s
    filebeat-sw4z8                1/1     Running   0          3m15s
    kibana-6cd7b9d48b-jrx79       1/1     Running   0          35m
    kube-flannel-ds-amd64-ghlkp   1/1     Running   1          61m
    kube-flannel-ds-amd64-lrq8q   1/1     Running   1          61m
    kube-flannel-ds-amd64-vtmf4   1/1     Running   1          61m
    
    

    起来之后就会自动采集日志

    收集日志中落盘的日志文件

    收集/var/log/message的日志,在所有node上部署一个filebeat,也就是用daemonsets去部署,挂载宿主机的messages文件到容器,编写配置文件去读message文件就可以了撒,所以YAML文件如下,Configmapdaemonset写到一起了

    [root@k8s01 yml]# cat k8s-logs.yaml
    apiVersion: v1
    kind: ConfigMap
    metadata:
      name: k8s-logs-filebeat-config
      namespace: kube-system 
      
    data:
      filebeat.yml: |
        filebeat.inputs:
          - type: log
            paths:
              - /var/log/messages  
            fields:
              app: k8s 
              type: module 
            fields_under_root: true
    
        setup.ilm.enabled: false
        setup.template.name: "k8s-module"
        setup.template.pattern: "k8s-module-*"
    
        output.elasticsearch:
          hosts: ['elasticsearch-0.elasticsearch.kube-system:9200']
          index: "k8s-module-%{+yyyy.MM.dd}"
    
    ---
    
    apiVersion: apps/v1
    kind: DaemonSet 
    metadata:
      name: k8s-logs
      namespace: kube-system
    spec:
      selector:
        matchLabels:
          project: k8s 
          app: filebeat
      template:
        metadata:
          labels:
            project: k8s
            app: filebeat
        spec:
          containers:
          - name: filebeat
            image: elastic/filebeat:7.5.0
            args: [
              "-c", "/etc/filebeat.yml",
              "-e",
            ]
            resources:
              requests:
                cpu: 100m
                memory: 100Mi
              limits:
                cpu: 500m
                memory: 500Mi
            securityContext:
              runAsUser: 0
            volumeMounts:
            - name: filebeat-config
              mountPath: /etc/filebeat.yml
              subPath: filebeat.yml
            - name: k8s-logs 
              mountPath: /var/log/messages
          volumes:
          - name: k8s-logs
            hostPath: 
              path: /var/log/messages
          - name: filebeat-config
            configMap:
              name: k8s-logs-filebeat-config
    

    这里主要将宿主机的目录挂载到容器中直接通过filebeat进行收集

            volumeMounts:
            - name: filebeat-config
              mountPath: /etc/filebeat.yml
              subPath: filebeat.yml
            - name: k8s-logs 
              mountPath: /var/log/messages
          volumes:
          - name: k8s-logs
            hostPath: 
              path: /var/log/messages
          - name: filebeat-config
            configMap:
              name: k8s-logs-filebeat-config
    

    开始创建

    [root@k8s01 yml]# kubectl apply -f k8s-logs.yaml 
    configmap/k8s-logs-filebeat-config created
    daemonset.apps/k8s-logs created
    [root@k8s01 yml]# 
    [root@k8s01 yml]# kubectl get pods -n kube-system 
    NAME                          READY   STATUS    RESTARTS   AGE
    coredns-6d8cfdd59d-cbhzg      1/1     Running   0          65m
    elasticsearch-0               1/1     Running   0          55m
    filebeat-bfd9t                1/1     Running   0          16m
    filebeat-gbf5f                1/1     Running   0          16m
    filebeat-sw4z8                1/1     Running   0          16m
    k8s-logs-5q9k6                1/1     Running   0          27s
    k8s-logs-7t7jr                1/1     Running   0          27s
    k8s-logs-kz8hz                1/1     Running   0          27s
    kibana-6cd7b9d48b-jrx79       1/1     Running   0          48m
    kube-flannel-ds-amd64-ghlkp   1/1     Running   1          74m
    kube-flannel-ds-amd64-lrq8q   1/1     Running   1          74m
    kube-flannel-ds-amd64-vtmf4   1/1     Running   1          74m
    [root@k8s01 yml]# 
    

    kibana看一眼,没意外的话会有一个名为k8s-module的索引

  • 相关阅读:
    《图解HTTP》简单的HTTP协议
    《图解HTTP》web及网络基础
    尚硅谷--雷丰阳--ElasticSearch 7.4.2版本 -- 有道云笔记
    ElasticSearch _bulk批量插入报错
    SpringBoot利用Filter来解决跨域问题
    js中数组的常用方法
    Mysql时间加减函数
    mybatis映射文件中不能使用">""<""&"问题
    博客园样式第二版
    GO学习笔记之 map
  • 原文地址:https://www.cnblogs.com/helloord/p/13218079.html
Copyright © 2020-2023  润新知