1、进程的线程共享进程的资源
2、线程的目的
异步:我想异步做一件事情,总的执行流继续往下走
并行(多线程):同时做很多件事情
单线程作用是异步
3、如何把一件事情放到线程中去做
import threading
t = threading.Thread(target=func,args=[])
t.start
只需掌握两个参数
1、target 后面跟做的事情 函数名
2、args 后边跟着函数的参数
import threading import time def sleep(): time.sleep(5) print('5 second') return 'money' t = threading.Thread(target=sleep) t.start()
函数带参数的 (参数的小括号可以换成中括号)
原生线程调用方式缺点
1、传参数不得劲
2、函数的返回值无法得到
封装的线程类 utils.py
#coding:gbk import threading import time class FuncThread(threading.Thread): def __init__(self, func, *args, **kwargs): super(FuncThread, self).__init__() self.func = func self.args = args self.kwargs = kwargs self.finished = False self.result = None def run(self): self.result = self.func(*self.args, **self.kwargs) self.finished = True def is_finished(self): return self.finished def get_result(self): return self.result def sleep(n): time.sleep(n) print('sleep %s second' % n) return 'money' def do_in_thread(func, *args, **kwargs): ft = FuncThread(func, *args, **kwargs) ft.start() return ft t = do_in_thread(sleep, 2) time.sleep(2.5) print(t.get_result())
可以拿到线程的返回结果
封装线程的使用方法
do_in_thread(func_name, 参数)
多线程怎么办?
在for循环中起多个单线程即可
utils.py #coding:gbk import threading class FuncThread(threading.Thread): def __init__(self, func, *args, **kwargs): super(FuncThread, self).__init__() self.func = func self.args = args self.kwargs = kwargs self.finished = False self.result = None def run(self): self.result = self.func(*self.args, **self.kwargs) self.finished = True def is_finished(self): return self.finished def get_result(self): return self.result def do_in_thread(func, *args, **kwargs): ft = FuncThread(func, *args, **kwargs) ft.start() return ft
#coding:utf-8 import time import os import utils def check_file_exist(file_name): return os.path.exists(file_name)
#超时处理函数
def handle_timeout(func, timeout, *args, **kwargs): interval = 1 ret = None while timeout > 0: begin_time = time.time() ret = func(*args, **kwargs) if ret: break time.sleep(interval) timeout -= time.time() - begin_time return ret def dump_data(): time.sleep(100) f = open(r'C:UsersMartinDesktopfinish', 'w') f.close() utils.do_in_thread(dump_data) """在一分钟之内检查桌面上是否有finish这样一个文件,如果有,返回True, 如果没有,继续检查,知道超时 """ print(handle_timeout(check_file_exist, 5, r'C:UsersMartinDesktopfinish'))
join 方法
作用: 使得线程阻塞到函数执行完成之后,主流程才继续往下走
如果程序想要在线程完成后再往下走,那么可以用join完成
参数: 默认知道完成后才继续往下走
超时: 阻塞的时间
使用方法
ft = do_in_thread(fun_name, 参数)
ft.join()
ft.join()
join使用场景: 多线程中
#coding:utf-8 import threading import time class FuncThread(threading.Thread): def __init__(self, func, *args, **kwargs): super(FuncThread, self).__init__() self.func = func self.args = args self.kwargs = kwargs self.finished = False self.result = None def run(self): self.result = self.func(*self.args, **self.kwargs) self.finished = True def is_finished(self): return self.finished def get_result(self): return self.result def do_in_thread(func, *args, **kwargs): ft = FuncThread(func, *args, **kwargs) ft.start() return ft def a(): time.sleep(5) print('a : done') ft = do_in_thread(a) ft.join() print('测试join')
加了join方法之后,主执行流等待子线程完成后 最后才执行
多线程部署java代码实例
#coding:gbk import time import threading class FuncThread(threading.Thread): def __init__(self, func, *args, **kwargs): super(FuncThread, self).__init__() self.func = func self.args = args self.kwargs = kwargs self.finished = False self.result = None def run(self): self.result = self.func(*self.args, **self.kwargs) self.finished = True def is_finished(self): return self.finished def get_result(self): return self.result def do_in_thread(func, *args, **kwargs): ft = FuncThread(func, *args, **kwargs) ft.start() return ft def handle_timeout(func, timeout, *args, **kwargs): interval = 1 ret = None while timeout > 0: begin_time = time.time() ret = func(*args, **kwargs) if ret: break time.sleep(interval) timeout -= time.time() - begin_time return ret
def calc_time(func):
def _deco(*args, **kwargs):
begin_time = time.time()
ret = func(*args, **kwargs)
cost_time = time.time() - begin_time
print('do %s cost time: %s' % (func, cost_time))
return cost_time
return _deco
#coding:gbk import time import utils def deploy_java(): print("开始部署java代码") time.sleep(5) print("部署java代码完成") return True def start_tomcat(): print("开始启动tomcat") time.sleep(5) print("启动tomcat完成") return True def health_check(): print("开始进行java服务健康检查") time.sleep(1) print("java服务健康检查完成,服务正常") return True def check(thread_obj): if not thread_obj.is_finished(): return return thread_obj.get_result() @utils.calc_time def deploy(timeout): for step in steps: thread_obj = utils.do_in_thread(step) rst = utils.handle_timeout(check, timeout, thread_obj) if not rst: print("%s 没有在%s 秒的时间内完成" % (step, timeout)) print("停止部署任务") break if __name__ == '__main__': steps = [deploy_java, start_tomcat, health_check] print("开始部署") #begin_time = time.time() deploy(10) #print("部署任务共用了 %s " % str(time.time() - begin_time))
多线程:多个单线程
使用方法:
1) 用多线程做一件事情 80%
for i in range(100):
do_in_thread(func_name)
2) 多线程做多件事情
1) 用多线程做一件事情 80%
for i in range(100):
do_in_thread(func_name)
2) 多线程做多件事情
#coding:gbk import time import threading class FuncThread(threading.Thread): def __init__(self, func, *args, **kwargs): super(FuncThread, self).__init__() self.func = func self.args = args self.kwargs = kwargs self.finished = False self.result = None def run(self): self.result = self.func(*self.args, **self.kwargs) self.finished = True def get_result(self): return self.result def is_finished(self): return self.finished def do_in_thread(func, *params, **paramMap): ft = FuncThread(func, *params, **paramMap) ft.start() return ft def calc_time(func): def _deco(*args, **kwargs): begin_time = time.time() ret = func(*args, **kwargs) cost_time = time.time() - begin_time print('do %s cost time: %s' % (func, cost_time)) return cost_time return _deco def movie(): print("这就是街舞! ") time.sleep(2) def eating(): print("吃零食. ") time.sleep(1) def call(): print("打电话! ") time.sleep(0.5) @calc_time def calc_time_without_multi_threading(): call() eating() movie() @calc_time def calc_time_with_multi_threading(): func_names = [movie, eating, call] thread_objs = [] for func_name in func_names: t = do_in_thread(func_name) thread_objs.append(t) for thread_obj in thread_objs: thread_obj.join() #print('不使用线程占用时间:%s' % calc_time_without_multi_threading()) print('使用线程占用时间:%s' % calc_time_with_multi_threading())
方式:
1) 通过一个列表在for循环中收集所有线程的对象
2) 遍历列表,执行每个对象join
1) 通过一个列表在for循环中收集所有线程的对象
2) 遍历列表,执行每个对象join
结论:
多线程全部join占用总时间是:多线程中执行最长的那个线程的时间
多线程全部join占用总时间是:多线程中执行最长的那个线程的时间
多线程安全问题----锁
from threading import Lock
lock = Lock()
lock.acquire()
lock.release()
1) 初始化锁对象
lock = Lock()
2) 获取锁
lock.acquire()
3) 释放锁
lock.release()
lock = Lock()
2) 获取锁
lock.acquire()
3) 释放锁
lock.release()
#coding:utf-8 import threading from threading import Lock some_var = 0 class FuncThread(threading.Thread): def __init__(self, func, *params, **kwparams): threading.Thread.__init__(self) self.func = func self.params = params self.kwparams = kwparams self.result = None self.finished = False def run(self): self.result = self.func(*self.params, **self.kwparams) self.finished = True def get_result(self): return self.result def is_finished(self): return self.finished def do_in_thread(func, *params, **paramMap): ft = FuncThread(func, *params, **paramMap) ft.start() return ft def add_some_var(): global some_var read_value = some_var print("当前全局变量的值: %d " % read_value) some_var = read_value + 1 print("加过后全局变量的值: %d " % some_var) def do_add_in_thread(): threads = [] for i in range(500): t = do_in_thread(add_some_var) threads.append(t) for t in threads: t.join() print("预期some_var为500") print("实际结果是 %d" % (some_var,)) do_add_in_thread()
加锁后
#coding:utf-8 import threading from threading import Lock some_var = 0 lock = Lock() class FuncThread(threading.Thread): def __init__(self, func, *params, **kwparams): threading.Thread.__init__(self) self.func = func self.params = params self.kwparams = kwparams self.result = None self.finished = False def run(self): self.result = self.func(*self.params, **self.kwparams) self.finished = True def get_result(self): return self.result def is_finished(self): return self.finished def do_in_thread(func, *params, **paramMap): ft = FuncThread(func, *params, **paramMap) ft.start() return ft def add_some_var(): global some_var lock.acquire() read_value = some_var print("当前全局变量的值: %d " % read_value) some_var = read_value + 1 lock.release() print("加过后全局变量的值: %d " % some_var) def do_add_in_thread(): threads = [] for i in range(500): t = do_in_thread(add_some_var) threads.append(t) for t in threads: t.join() print("预期some_var为500") print("实际结果是 %d" % (some_var,)) do_add_in_thread()
线程池原理
安装futures模块 (tornado 使用线程池 futures)
使用:
from concurrent.futures import ThreadPoolExecutor
t = ThreadPoolExecutor(num)
t.submit(func_name)
from concurrent.futures import ThreadPoolExecutor
t = ThreadPoolExecutor(num)
t.submit(func_name)
t = ThreadPoolExecutor(10)
t.submit(do_something)
t.submit(do_something)
# coding:utf8 import time from concurrent.futures import ThreadPoolExecutor TEST_COUNT = 100 THREADS_SUM = 10 thread_pool = ThreadPoolExecutor(THREADS_SUM) def test(num): time.sleep(1) print('中秋快乐;') for i in range(TEST_COUNT): thread_pool.submit(test,i)
python 执行 shell指令 def create_process(cmd): p = subprocess.Popen(cmd, shell=True, stdout=subprocess.PIPE, stderr=subprocess.STDOUT) result = p.stdout.read() code = p.wait() return code, result