• The Prices


    题目描述

    你要购买(m)种物品各一件,一共有(n)家商店,你到第(i)家商店的路费为(d[i]),在第家商店购买第(j)种物品的费用为(c[i][j]),求最小总费用。

    输入格式

    第一行包含两个正整数(n,m(1<=n<=100,1<=m<=16)),表示商店数和物品数。

    接下来(n)行,每行第一个正整数(d[i](1<=d[i]<=1000000))表示到第(i)家商店的路费,接下来(m)个正整数,依次表示(c[i][j](1<=c[i][j]<=100000))

    输出格式

    一个正整数,即最小总费用。

    样例

    样例输入

    3 4
    5 7 3 7 9
    2 1 20 3 2
    8 1 20 1 1
    

    样例输出

    16
    

    题解

    • 看数据,(m≤16),明显小于20,首先想到状压dp 。
    • 定义:(dp[i][j]) 表示前 (i) 个商店,买东西的状态为 (j) 时的最小花费。
    • 首先枚举每个商家,然后加上路费。注意如果两次在同一条路上,需要减去重复的路费,路费只算一遍!!!
    • 然后枚举第i个商家的m件商品,并进行状态转移条件判断:想买第k件商品,则前i-1个商家没有买k,所以j的二进制的第k为0
    • 然后状态转移方程就很简单:dp[i][j|(1<<k-1)]=min(dp[i][j|(1<<k-1)],dp[i][j]+a[i][k]);
    • 最后就不买第i个商家的物品和买第i个商家的物品的情况进行比较,选出最优解。

    code

    #include <bits/stdc++.h>
    using namespace std;
    typedef long long LL;
    const int maxn=(1<<16)+5;
    int dp[105][maxn],a[105][20],d[105];
    int main(){
    	int n,m;scanf("%d%d",&n,&m);
    	for(int i=1;i<=n;++i){
    		scanf("%d",&d[i]);
    		for(int j=1;j<=m;++j)
    			scanf("%d",&a[i][j]);
    	}
    	memset(dp,0x3f,sizeof(dp));
    	dp[0][0]=0;
    	int Max=1<<m;
    	for(int i=1;i<=n;++i){
    		for(int j=0;j<Max;++j)
    			dp[i][j]=dp[i-1][j]+d[i];
    		for(int k=1;k<=m;++k)
    			for(int j=0;j<Max;++j)
    				if(~j & (1<<k-1))
    					dp[i][j|(1<<k-1)]=min(dp[i][j|(1<<k-1)],dp[i][j]+a[i][k]);
    		for(int j=0;j<Max;++j)
    			dp[i][j]=min(dp[i][j],dp[i-1][j]);
    	}
    	printf("%d
    ",dp[n][Max-1]);
        return 0;
    }
    
    
  • 相关阅读:
    课堂测试-单元测试(比较大小)
    第三周进度条
    软件工程个人作业02
    构建之法——阅读笔记02
    第二周学习进度条
    第一周学习进度条
    软件工程个人作业01
    构建之法阅读笔记01
    java课堂测试
    Java验证码程序
  • 原文地址:https://www.cnblogs.com/hellohhy/p/13195760.html
Copyright © 2020-2023  润新知