• Deep learning with Python


    一、导论

    1.1 人工智能、机器学习、深度学习

    人工智能、机器学习

    人工智能:1980年代达到高峰的是专家系统,符号AI是之前的,但不能解决模糊、复杂的问题。

    机器学习是把数据、答案做输入,规则作输出。而传统的是把数据、规则作输入,答案作输出。和统计学有关,但是比统计学解决问题更加复杂。

    机器学习三要素:

    • 输入、
    • 期望的输出、
    • 衡量指标。

    机器学习中的「学习」,就是指寻找更好的表达。

    深度学习

    深度学习(Deep learning)中的深度,是指递进式层级的表达。层数,就是深度。层数一般10层到数百层不等。

    而非深度学习,被称为浅度学习(shallow learning)。

    深度学习的层,常和神经网络有关。(神经网络和生物学的大脑神经没半毛钱关系。)可将层,视为过滤器,一层一层过滤,最后一层输出的是纯净物。

    每一层都有权重,找到权重很难。但目标和输入之间的距离,用损失函数(目标函数)来衡量。这样来调节权重。这就是反馈算法,深度学习算法的核心。

    于是,开始时候随便给个权重,这样第一次的结果,和Y之间就有一个差距(第一次很大),这样就调节权重,进行第二次,再算出差距,循环往复。

    提醒

    AI经历了两轮寒冬,不要被媒体的过分宣传引导。要避免铁锤人倾向,可以学一些其他的机器学习算法。概率模型(朴素贝叶斯、逻辑回归)这些经常用于分类。

    1.2 历史

    Kernal method

    核心算法是一系列的分类算法,支持向量机就是一种(SVM),SVM处理小数据比较好,但是像图像这样的大数据就不行了,而且是浅算法,一开始需要人为操作。

    决策树、随机森林、梯度提升机

    随机森林是把决策树给聚合在一起,在kaggle上,一度是最流行的算法,后来被gradient boosting machine取代

    之所以深度学习脱颖而出,不仅仅因为其表现较好,更是因为可以自动完成其他机器学习需要手动完成的一步——特征工程

    1.3 现在

    Kaggle中,gradient boosting machinedeep learning两种在2016,2017最流行。

    gradient boosting machiens 用于结构化数据,是浅算法,使用XGBboost库。而deep learning使用Keras

    硬件在2000以来飞速发展,但是还不足以支撑关于图像、语言处理,但NVIDIA的cuda可用。

    二、 Tensor

    2.1 什么是tensor?

    tensor是数据容器,里面都是数据,任意维度的数据。

    0维tensor是scalar(标量)。np.array(12)就是一个scalar

    2.2 不同维度的tensor

    • 1维tensor是vector(向量)。np.array([3, 4, 5, 5])就是一个vector

    • 2维tensor是matrix(矩阵) 由多个vector组成

    • 3维是多个matrix。多个matrix组成

    • 一般是0-4维,5维是视频。

    (6000, 28, 28) 这是6000张,28*28大小的图片。第一维度是样本轴。如果是按批次处理,第一维度是batch轴。

    常用数据类型

    Vector

    每个人有年龄、邮编、收入三个特征。100个人,表示为:(100, 3)

    3D

    每分钟股票价格、最高价、最低价。一天有390分钟,一年有250个交易日:(250, 390, 3)

    4D图片

    每个有色图像RGB是是三个(4th D),一张图片有长度、宽度(3th, 2th D),若干张图片(1th D)。(200, 256, 256, 3) 是200张,256*256大小的有色图片。

    5D视频

    一帧是一张图片,号多帧,就是视频(4, 240, 144, 256, 3) 就是4个240帧的144*256大小的彩色视频。

    Tensor操作

    • 元素指向操作。针对tensor中每个元素进行运算。
    • 广播 broadcast。将一列向其他列做同样操作。
    • 点乘 dot 。类似于矩阵的乘法(而不是数乘)
    • 重塑 reshape。原、新tensor元素个数要相同。
  • 相关阅读:
    http://www.kankanews.com/ICkengine/archives/18078.shtml
    c# ArrayList 的排序问题!
    MVC各种传值方式
    MVC3学习第五章 排山倒海第一变母版页,模型
    MVC3学习第三章 剑出鞘之前奏控制器,URL路由
    MVC3学习第二章 剑出鞘之看剑vs2010安装MVC3和建立你的第一个MVC3项目
    MVC3学习第四章 剑出鞘之后续MVC3的新特性之Razor视图解析
    MVC3学习第一章 掀起它的盖头来
    有关匿名函数执行与传参
    ubuntu12.04安装jdk7u79linuxi586.tar.gz
  • 原文地址:https://www.cnblogs.com/heenhui2016/p/10896229.html
Copyright © 2020-2023  润新知