Luogu P5296 [北京省选集训2019]生成树计数
题目大意:给定每条边的边权。一颗生成树的权值为边权和的(k)次方。求出所有生成树的权值和。
我们列出答案的式子:
设(E)为我们枚举的生成树的边集。
[Ans=sum_{E}(sum_{iin E}w_i)^k\
=sum_E prod_{iin E} inom{k}{a_i}w_i^{a_i}[sum_{iin E}a_i=k]\
=sum_E frac{1}{k!} prod_{iin E} frac{1}{a_i!} w_i^{a_i}[sum_{iin E}a_i=k]
]
我们知道,基尔霍夫矩阵求出来的东西是:
[sum_{E}prod_{iin E}w_i
]
但是对于上面那个式子,我们发现每条边其实是个多项式:
[w(x)=sum_{i=0}^kfrac{1}{i!}w^i
]
进一步发现,最终答案的多项式的项数是(n*k)(大概吧)。
于是我们带入大于(n*k+1)个值进去,用矩阵树定理算出对应的值,然后拉格朗日插值暴力算出第(k)项的系数(应该有更好的方法)。
复杂度:(O(n^4k))
代码:
#include<bits/stdc++.h>
#define ll long long
#define N 35
using namespace std;
inline int Get() {int x=0,f=1;char ch=getchar();while(ch<'0'||ch>'9') {if(ch=='-') f=-1;ch=getchar();}while('0'<=ch&&ch<='9') {x=(x<<1)+(x<<3)+ch-'0';ch=getchar();}return x*f;}
const ll mod=998244353;
ll ksm(ll t,ll x) {
ll ans=1;
for(;x;x>>=1,t=t*t%mod)
if(x&1) ans=ans*t%mod;
return ans;
}
int n,m,k;
ll w[N][N];
ll a[N][N];
ll val[N][N];
ll g[N][N][N];
ll f[N*N];
ll fac[N*N],ifac[N*N];
ll Gauss(ll a[N][N],int n) {
ll ans=1;
for(int i=2;i<=n;i++) {
for(int j=i;j<=n;j++) {
if(a[j][i]) {
if(i!=j) {
ans=ans*(mod-1)%mod;
swap(a[i],a[j]);
}
break;
}
}
ans=ans*a[i][i]%mod;
ll inv=ksm(a[i][i],mod-2);
for(int j=i+1;j<=n;j++) {
ll tem=inv*a[j][i]%mod;
for(int k=i;k<=n;k++) a[j][k]=(a[j][k]-tem*a[i][k]%mod+mod)%mod;
}
}
return ans;
}
ll dp[N*N];
void Insert(int v) {
for(int i=m;i>=0;i--) {
dp[i]=dp[i]*(mod-v)%mod;
if(i) (dp[i]+=dp[i-1])%=mod;
}
}
void Del(int v) {
for(int i=0;i<=m;i++) {
if(i) (dp[i]=dp[i]-dp[i-1]+mod);
dp[i]=dp[i]*ksm(mod-v,mod-2)%mod;
}
}
int main() {
n=Get(),k=Get();
m=n*k+3;
fac[0]=1;
for(int i=1;i<=m;i++) fac[i]=fac[i-1]*i%mod;
ifac[m]=ksm(fac[m],mod-2);
for(int i=m-1;i>=0;i--) ifac[i]=ifac[i+1]*(i+1)%mod;
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
w[i][j]=Get();
for(int i=1;i<=n;i++) {
for(int j=i+1;j<=n;j++) {
for(int q=0;q<=k;q++) {
g[i][j][q]=ksm(w[i][j],q)*ifac[q]%mod;
}
}
}
for(int x0=1;x0<=m;x0++) {
for(int i=1;i<=n;i++) {
for(int j=i+1;j<=n;j++) {
val[i][j]=0;
ll now=1;
for(int q=0;q<=k;q++) {
(val[i][j]+=g[i][j][q]*now)%=mod;
now=now*x0%mod;
}
}
}
memset(a,0,sizeof(a));
for(int i=1;i<=n;i++) {
for(int j=i+1;j<=n;j++) {
a[i][i]+=val[i][j];
a[j][j]+=val[i][j];
a[i][j]-=val[i][j];
a[j][i]-=val[i][j];
}
}
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
a[i][j]=(a[i][j]%mod+mod)%mod;
f[x0]=Gauss(a,n);
}
dp[0]=1;
for(int i=1;i<=m;i++) Insert(i);
ll ans=0;
for(int i=1;i<=m;i++) {
Del(i);
ll now=1;
for(int j=1;j<=m;j++)
if(i!=j) now=now*(i-j)%mod;
now=ksm(now%mod+mod,mod-2);
(ans+=now*dp[k]%mod*f[i])%=mod;
Insert(i);
}
cout<<ans*fac[k]%mod<<"
";
return 0;
}