• 针对句子或文章的 -- 关于切词组化的正序排布


    有时候会有种需求就是:将一段句子里面的词语进行分词,分词结果根据构造的词典进行分词

    (当然了解NLP的同学,jieba里面的自定义词典可以满足需求) 这里自己写了轮子共享下:

    需求:

    a = "i love you so much and want to do something for you, can you give me one chance or want to marry you."
    require_list = ["want to", "so much", "one chance"]

    ## 结果需要
    Finish Result: ['i', 'love', 'you', 'so much', 'and', 'want to', 'do', 'something', 'for', 'you,', 'can', 'you', 'give', 'me', 'one chance', 'or', 'want to', 'marry', 'you.']


    采用了逆向词组判定和递归的想法:
    # 关于切词组化的正序排布
    def tokenize(need_article1, rule_phrase, new_list):
        need_article = need_article1
        len_need_article = len(need_article)
        for word_join in rule_phrase:
    
            while word_join in need_article:
            # if word_join in need_article:
                length = len(word_join)
                index_first = need_article.find(word_join)
    
                if index_first == -1:
                    break
                try:
                    if index_first + length < len_need_article:
                        if need_article[index_first + length] == " " and (index_first == 0 or need_article[index_first - 1] == " "):
    
                            need_article_temp = need_article[:index_first + length]
                            specfic_phrase = need_article_temp[index_first::]
    
                            if need_article_temp[:index_first]:
    
                                before_phrase = need_article_temp[:index_first]
    
                                conbine_list = tokenize(before_phrase, rule_phrase, new_list)
    
                                if conbine_list:
                                    new_list.append(specfic_phrase)
    
                                    need_article =need_article[index_first + length:]
    
                            else:
                                new_list.append(specfic_phrase)
                                need_article = need_article[index_first + length:]
    
                        else:
                            break
                except Exception as e:
                    # 这里越界不做处理,直接将句子扔进递归
                    need_article_temp = need_article[:index_first + length]
    
                    specfic_phrase = need_article_temp[index_first::]
                    if need_article_temp[:index_first]:
                        before_phrase = need_article_temp[:index_first]
    
                        conbine_list = tokenize(before_phrase, rule_phrase, new_list)
    
                        if conbine_list:
                            new_list.append(specfic_phrase)
    
                            need_article = need_article[index_first + length:]
    
                    else:
                        new_list.append(specfic_phrase)
                        need_article = need_article[index_first + length:]
        else:
            conbine_list2 = need_article.split()
            new_list.extend(conbine_list2)
        if need_article1 == need_article:
            if not conbine_list2:
                conbine_list = need_article.split()
                new_list.extend(conbine_list)
            return need_article
    
        return new_list
    
    def tokenize_foo(a, list1, new_list):
    
        new_list_order = tokenize(a, list1, new_list)
        if a == new_list_order:
            # 还是返回了原来的字符串, 没有任何的词汇组合
            new_list_order = new_list_order.split()
    
        return new_list_order
    
    
    

      

    主程序:
    if __name__ == '__main__':
    
    
        a = "i love you so much and want to do something for you, can you give me one chance or want to marry you."
    
        list1 = ["want to", "one chance", "so much"]
    
        new_list = []
        new_list_order = tokenize_foo(a, list1, new_list)
        print(new_list_order)
    
    
    

     结果展示




    日积月累,小小的力量,大大的梦想...
  • 相关阅读:
    典型漏洞归纳之上传漏洞
    典型漏洞归纳之解析漏洞
    Python学习目录
    MySQL数据库优化的八种方式
    深度剖析Flask上下文管理机制
    算法十大排序(含动图)
    设计模式代码实例
    设计模式
    数据结构
    算法基础
  • 原文地址:https://www.cnblogs.com/harp-yestar/p/tokenize_pharase.html
Copyright © 2020-2023  润新知