题意:求A^B的因子的和。
/* 首先将A分解 A=p1^a1*p2^a2*...*pn*an A^B=p1^a1B*p2^a2B*...*pn*anB 因子之和sum=(1+p1+p1^2+...+p1^a1B)*...*(1+pn+pn^2+...+pn*anB) 套用等比数列的公式,再用逆元搞一下。 求逆元:(a/b)mod m=amod(bm)/b */ #include<cstdio> #include<iostream> #define N 10010 #define mod 9901 #define lon long long using namespace std; int prime[N],f[N],num; void get_prime(){ for(int i=2;i<N;i++){ if(!f[i]) prime[++num]=i; for(int j=1;j<=num;j++){ if(i*prime[j]>=N) break; f[i*prime[j]]=1; if(i%prime[j]) break; } } } lon msm(lon A,lon B,lon MOD){ lon base=A,r=0; while(B){ if(B&1) r=(r+base)%MOD; base=(base+base)%MOD; B>>=1; } return r; } lon ksm(lon A,lon B,lon MOD){ lon base=A,r=1; while(B){ if(B&1) r=msm(r,base,MOD); base=msm(base,base,MOD); B>>=1; } return r; } void solve(lon A,lon B){ lon ans=1; for(int i=1;prime[i]*prime[i]<=A;i++){ if(A%prime[i]==0){ int num=0; while(A%prime[i]==0){ num++; A/=prime[i]; } lon M=(prime[i]-1)*mod; ans*=(ksm(prime[i],num*B+1,M)+M-1)/(prime[i]-1); ans%=mod; } } if(A>1){ lon M=mod*(A-1); ans*=(ksm(A,B+1,M)+M-1)/(A-1); ans%=mod; } cout<<ans<<endl; } int main(){ lon A,B; get_prime(); while(cin>>A>>B) solve(A,B); return 0; }