• Spark Streaming实时计算


    spark批处理模式:

      receiver模式:接收数据流,负责数据的存储维护,缺点:数据维护复杂(可靠性,数据积压等),占用计算资源(core,memory被挤占)

      direct模式:数据源由三方组件完成,spark只负责数据拉取计算,充分利用资源计算

    window计算:

      def windowApi(): Unit = {
    
        val conf: SparkConf = new SparkConf().setAppName("sparkstream").setMaster("local[2]")
        val sc = new SparkContext(conf)
        val ssc = new StreamingContext(sc, Duration(1000))
        ssc.sparkContext.setLogLevel("ERROR")
    
        val resource: ReceiverInputDStream[String] = ssc.socketTextStream("localhost",8889)
        val format: DStream[(String, Int)] = resource.map(_.split(" ")).map(x=>(x(0),1))
        //统计每次看到的10s的历史记录
        //windowDuration窗口一次最多批次量,slideDuration滑动间隔(job启动间隔),最好等于winduration
        val res: DStream[(String, Int)] = format.reduceByKeyAndWindow(_+_,Duration(10000),Duration(1000))//每一秒计算最后10s内的数据
        res.print()
    
        ssc.start()
        ssc.awaitTermination()
    
      }  

    window处理流程:

      

    执行流程:

      说明:Receiver模式下,接收器创建数据块,每间隔blockInterval 时间产生新的数据块,块的个数N = batchInterval/blockInterval。这些数据块由当前executor的BlockManager发送到其它executor的BlockManager,driver追踪块的位置为下一步计算准备

    1,JobScheduler通过EventLoop消息处理机制处理job事件(jobStart,jobCompletion,jobError对job进行标记)使用ThreadPoolExecutor为每个job维护一个thread执行job.run

    2,JobGenerator负责job生成,执行checkpoint,清理DStream产生的元数据,触发receiverTracker为下一批次数据建立block块的标记

    
    

    stream合并与转换:

      每个DStream对应一种处理,对于数据源有多种特征需要多个DStream分别处理,最后将结果在一起处理,val joinedStream = windowedStream1.join(windowedStream2)

        val conf: SparkConf = new SparkConf().setAppName("sparkstream").setMaster("local[2]")
        val sc = new SparkContext(conf)
        val ssc = new StreamingContext(sc, Duration(1000))
        ssc.sparkContext.setLogLevel("ERROR")
        val resource: ReceiverInputDStream[String] = ssc.socketTextStream("localhost",8889)
        val format: DStream[(String, Int)] = resource.map(_.split(" ")).map(x=>(x(0),1))
        //transform  加工转换处理
            val res: DStream[(String, Int)] = format.transform( //返回值是RDD
              (rdd )  =>{
                val rddres: RDD[(String, Int)] = rdd.map(x => (x._1, x._2 * 10))//做转换
                rddres
              }
            )
    
        //末端处理
        format.foreachRDD(    //StreamingContext  有一个独立的线程执行while(true)下面的代码是放到执行线程去执行
          (rdd)=>{
            rdd.foreachPartition { partitionOfRecords =>
    //          val connection = createNewConnection()
    //          to redis or mysql
    //          partitionOfRecords.foreach(record => connection.send(record))
    //          connection.close()
            
            }
          }
        )
    

      

    Caching / Persistence
    在使用window统计时(reduceByWindow ,reduceByKeyAndWindow,updateStateByKey)Dstream会自动调用persist将结果缓存到内存(data serialized)

    Checkpointing      保存两种类型数据存储

      Metadatadriver端需要的数据
        Configuration: application配置信息conf
        DStream operations: 定义的Dstream操作集合
        Incomplete batches:在队列内还没计算完成的bactch数据

      
    Data checkpointing:已经计算完成的状态数据

     设置checkpoint

    val ssc = new StreamingContext(...)    
    ssc.checkpoint(checkpointDirectory)
    dstream.checkpoint(checkpointInterval). 
    ......
    
    // Get StreamingContext from checkpoint data or create a new one
    val context = StreamingContext.getOrCreate(checkpointDirectory, functionToCreateContext _)
    context.

    checkpoint依赖外存储,随着batch处理间隔的变短,会使吞吐量显著降低,因此存储间隔要合理设置,系统默认最少10s调用一次,官方建议5s-10s

  • 相关阅读:
    Appium学习实践(二)Python简单脚本以及元素的属性设置
    Appium学习实践(三)测试用例脚本以及测试报告输出
    Appium学习实践(一)简易运行Appium
    Appium学习实践(四)结构优化
    js中对小数取整的函数
    C#基础 面试中常出现的问题
    repeater中的删除按钮实现
    js对fck编辑器取值 赋值
    jQuery对select操作
    进制转换(二进制 八进制 十进制 十六进制)
  • 原文地址:https://www.cnblogs.com/happyxiaoyu02/p/12526818.html
Copyright © 2020-2023  润新知