• 思路

    堆的原理就是每个节点保存以自身为根的树的最值。
    那么左右子树,根节点也有此性质。
    由此,较难的点便是插入与删除的树的调整。

    # include <cstdio>
    # include <iostream>
    using namespace std;
    # define INF    0x3f3f3f3f3f3f3f3f
    # define MX     200005
    /**************************/
    int n;
    int heap[MX];
    
    void init() {
        n = 0;
    }
    
    /// 节点向上调整
    void up(int u) {
        while(u>1 && heap[u] < heap[u/2]) {
            swap(heap[u], heap[u/2]);
            u/=2;
        }
    }
    
    /// 节点向下调整
    void down(int u) {
        while(u<=n) {
            if (u*2+1<=n) { //有左右孩子
                int small = heap[u*2]<heap[u*2+1] ? u*2:u*2+1;  // 找出孩子中较小的
                if (heap[small] < heap[u]) {
                    swap(heap[small], heap[u]);
                    u = small;
                } else break;
            } else if (u*2<=n && heap[u*2] < heap[u]) { //只有左孩子
                swap(heap[u*2], heap[u]);
                u = u*2;
            } else break;
        }
    }
    
    /// 增加数据
    void add(int x){
        heap[++n] = x;
        up(n);
    }
    
    /// 删除数据
    int dele() {
        if (n==0) return -1;
    
        int ret = heap[1];
        swap(heap[n--], heap[1]); // 将根节点与末节点的值互换,并且n--
        down(1);
        return ret;
    }
    
    
    int main() {
        init();
    
        int xxx[98] = {-74,48,-20,2,10,-84,-5,-9,11,-24,-91,2,-71,64,63,80,28,-30,-58,-11,-44,-87,-22,54,-74,-10,-55,-28,-46,29,10,50,-72,34,26,25,8,51,13,30,35,-8,50,65,-6,16,-2,21,-78,35,-13,14,23,-3,26,-90,86,25,-56,91,-13,92,-25,37,57,-20,-69,98,95,45,47,29,86,-28,73,-44,-46,65,-84,-96,-24,-12,72,-68,93,57,92,52,-45,-2,85,-63,56,55,12,-85,77,-39};
    
        for (int i=0; i<98; i++) {
            add(xxx[i]);
        }
    
        for (int i=0; i<98; i++){
            printf("%d
    ", dele());
        }
    }
    
  • 相关阅读:
    [NOIP2015] D1T2 信息传递
    Codeforces #447 Div.2 Tutorial
    python进阶
    Vue入门
    python基础
    python介绍
    React笔记_(3)_react语法2
    React笔记_(2)_react语法1
    React笔记_(1)_react概述
    webpack笔记_(3)_First_Project
  • 原文地址:https://www.cnblogs.com/haoabcd2010/p/11081360.html
Copyright © 2020-2023  润新知