莫队
-
解决区间统计问题 如这题
-
分块 + 排序 + 加减操作移动 + 统计
-
复杂度: (O(Nsqrt{N}))
-
思想:通过分块和排序后,减少相邻区间的移动操作次数,并在区间移动过程中进行区间中统计
-
本质:二维扫描线,在二维平面上求曼哈顿距离最小生成树
-
带修莫队即加入时间一维,变为三维扫描线
-
树上莫队可以用括号序转为序列上的操作
例题 :
各种莫队的模板
//普通莫队
#include <bits/stdc++.h>
using namespace std;
#define ll long long
ll read() {
ll a = 0, f = 1; char c = getchar();
while(c > '9' || c < '0') {if(c == '-') f = -1; c = getchar();}
while(c >= '0' && c <= '9') {a = a * 10 + c - '0'; c = getchar();}
return a * f;
}
const int MAXN = 5e5 + 14;
ll n, m, xl, xr, block;
ll ans;
ll a[MAXN];
ll cnt[MAXN];
ll s[MAXN], w[MAXN];
struct question {
int l, r, bo, id;
#define l(x) ask[x].l
#define r(x) ask[x].r
#define bo(x) ask[x].bo
#define id(x) ask[x].id
} ask[MAXN];
bool cmp(question a, question b) {
if(a.bo == b.bo) return a.r < b.r;
else return a.bo < b.bo;
}
void add(int x) {
if(cnt[a[x]] > 0) ans += cnt[a[x]];
cnt[a[x]]++;
}
void del(int x) {
cnt[a[x]]--;
if(cnt[a[x]] > 0) ans -= cnt[a[x]];
}
ll gcd(ll x, ll y) {
if(y == 0) return x;
else return gcd(y, x % y);
}
int main() {
n = read(), m = read(); block = sqrt(n);
for (int i = 1; i <= n; i++) a[i] = read();
for (int i = 1; i <= m; i++) l(i) = read(), r(i) = read(), bo(i) = l(i) / block, id(i) = i;
sort(ask + 1, ask + m + 1, cmp);
for (int i = 1; i <= m; i++) {
while(xr > r(i)) del(xr--);
while(xr < r(i)) add(++xr);
while(xl < l(i)) del(xl++);
while(xl > l(i)) add(--xl);
if(xl == xr) {
s[id(i)] = 0; w[id(i)] = 1;continue;
}
s[id(i)] = ans; w[id(i)] = (xr - xl + 1) * (xr - xl) / 2;
if(s[id(i)] == 0) w[id(i)] = 1;
else {
ll x = gcd(s[id(i)], w[id(i)]);
s[id(i)] /= x; w[id(i)] /= x;
}
}
for (int i = 1; i <= m; i++) {
printf("%lld/%lld
", s[i], w[i]);
}
return 0;
}
//带修
//块大小为n^(2/3),复杂度O(n^(3/4))
const int MAXN = 2000010;
int n, m, qu, xt;
int block, B[MAXN];
int nl = 1, nr = 0, now = 0, a[MAXN], cnt[MAXN], tmp;
int c[MAXN][2];//0表示位置,1表示值
int ans[MAXN];
struct question
{
int l, r, ti, id;
}ask[MAXN];
inline bool cmp(const question &a, const question &b)
{
return B[a.l] ^ B[b.l] ? B[a.l] < B[b.l] : B[a.r] ^ B[b.r] ? B[a.r] < B[b.r] : a.ti < b.ti;
}
inline void add(int x)
{
if(!cnt[a[x]]) tmp++;
cnt[a[x]]++;
}
inline void del(int x)
{
cnt[a[x]]--;
if(!cnt[a[x]]) tmp--;
}
int main()
{
scanf("%d %d", &n, &m);
block = pow(n, 2.0 / 3.0);
for (int i = 1; i <= n; i++) scanf("%d", &a[i]);
for (int i = 1; i <= n; i++) B[i] = (i - 1) / block + 1;
for (int i = 1; i <= m; i++)
{
char opt[3];
scanf("%s", opt + 1);
if(opt[1] == 'Q')
{
++qu;
scanf("%d %d", &ask[qu].l, &ask[qu].r);
ask[qu].id = qu; ask[qu].ti = xt;
}
else
{
++xt;
scanf("%d %d", &c[xt][0], &c[xt][1]);
}
}
sort(ask + 1, ask + qu + 1, cmp);
for (int i = 1; i <= qu; i++)
{
while(nl > ask[i].l) add(--nl);
while(nl < ask[i].l) del(nl++);
while(nr > ask[i].r) del(nr--);
while(nr < ask[i].r) add(++nr);
while(ask[i].ti > now)//往前更新
{
++now;
if(c[now][0] >= nl && c[now][0] <= nr)
{
cnt[ a[c[now][0]] ]--;
if(!cnt[ a[c[now][0]] ]) --tmp;
}
swap(a[ c[now][0] ], c[now][1]);
if(c[now][0] >= nl && c[now][0] <= nr)
{
if(!cnt[ a[c[now][0]] ]) ++tmp;
cnt[ a[c[now][0]] ]++;
}
}
while(ask[i].ti < now)//往回撤销
{
if(c[now][0] >= nl && c[now][0] <= nr)
{
cnt[ a[c[now][0]] ]--;
if(!cnt[ a[c[now][0]] ]) --tmp;
}
swap(a[ c[now][0] ], c[now][1]);
if(c[now][0] >= nl && c[now][0] <= nr)
{
if(!cnt[ a[c[now][0]] ]) ++tmp;
cnt[ a[c[now][0]] ]++;
}
--now;
}
ans[ ask[i].id ] = tmp;
}
for (int i = 1; i <= qu; i++)
{
printf("%d
", ans[i]);
}
return 0;
}
//树上
#include <bits/stdc++.h>
using namespace std;
const int MAXN = 1000010;
const int LOG = 20;
int n, m, q, nl = 1, nr = 0, nt = 0;
long long vm[MAXN], wn[MAXN], a[MAXN], c[MAXN][2];
int block, B[MAXN];
int head[MAXN], nxt[MAXN << 1], v[MAXN << 1], cnt;
int qu, tx;
int dfn[MAXN], ind, fi[MAXN], se[MAXN];
int anc[MAXN][LOG], depth[MAXN];
int vis[MAXN];
int ct[MAXN];
long long res[MAXN], ans;
struct question
{
int l, r, ti, id;
} ask[MAXN];
inline bool cmp(const question &a, const question &b)
{
if(B[fi[a.l]] ^ B[fi[b.l]]) return B[fi[a.l]] < B[fi[b.l]];
if(B[fi[a.r]] ^ B[fi[b.r]]) return B[fi[a.r]] < B[fi[b.r]];
return a.ti < b.ti;
}
inline void add(int x, int y)
{
nxt[++cnt] = head[x]; head[x] = cnt; v[cnt] = y;
nxt[++cnt] = head[y]; head[y] = cnt; v[cnt] = x;
}
inline void dfsl(int u, int p, int d)
{
anc[u][0] = p; depth[u] = d;
for (int i = head[u]; i; i = nxt[i])
{
if(v[i] == p) continue;
dfsl(v[i], u, d + 1);
}
}
inline void init() {
dfsl(1, 0, 1);
for (int j = 1; j < LOG; j++)
for (int i = 1; i <= n; i++)
anc[i][j] = anc[ anc[i][j - 1] ][j - 1];
}
inline void swim(int &x, int h) {
for (int i = 0; h > 0; i++)
{
if(h & 1) x = anc[x][i];
h >>= 1;
}
}
inline int LCA(int x, int y)
{
if(depth[x] < depth[y]) swap(x, y);
if(y == 1) return 1;
swim(x, depth[x] - depth[y]);
if(x == y) return x;
for (int i = LOG - 1; i >= 0; i--)
{
if(anc[x][i] != anc[y][i])
{
x = anc[x][i];
y = anc[y][i];
}
}
return anc[x][0];
}
void dfs(int now, int f)
{
dfn[++ind] = now; fi[now] = ind;
for (int i = head[now]; i; i = nxt[i])
{
if(v[i] == f) continue;
dfs(v[i], now);
}
dfn[++ind] = now; se[now] = ind;
}
inline void sol(int x)//原编号
{
if(!vis[x]) ans += vm[a[x]] * wn[++ct[a[x]]];
else ans -= vm[a[x]] * wn[ct[a[x]]--];
vis[x] ^= 1;//翻转标记
}
void change()
{
if(vis[c[nt][0]])
{
sol(c[nt][0]);
swap(a[c[nt][0]], c[nt][1]);
sol(c[nt][0]);
}
else swap(a[c[nt][0]], c[nt][1]);
}
int main()
{
scanf("%d %d %d", &n, &m, &q);
for (int i = 1; i <= m; i++) scanf("%lld", &vm[i]);
for (int i = 1; i <= n; i++) scanf("%lld", &wn[i]);
for (int i = 1; i < n; i++)
{
int x, y;
scanf("%d %d", &x, &y);
add(x, y);
}
for (int i = 1; i <= n; i++) scanf("%lld", &a[i]);
init();
dfs(1, 0);
block = pow(ind, 2.0 / 3.0) + 1;
for (int i = 1; i <= ind; i++) B[i] = (i - 1) / block + 1;
tx = 0, qu = 0;
for (int i = 1; i <= q; i++)
{
int opt; scanf("%d", &opt);
if(opt == 0)
{
++tx;
scanf("%lld %lld", &c[tx][0], &c[tx][1]);//0表示在原编号的位置,1表示修改的值
}
else
{
++qu;
scanf("%d %d", &ask[qu].l, &ask[qu].r);
if(fi[ ask[qu].l ] > fi[ ask[qu].r ]) swap(ask[qu].l, ask[qu].r);
ask[qu].id = qu; ask[qu].ti = tx;
}
}
sort(ask + 1, ask + qu + 1, cmp);
for (int i = 1; i <= qu; i++)
{
while(nl < fi[ask[i].l]) sol(dfn[nl++]);//dfn记录了原编号
while(nl > fi[ask[i].l]) sol(dfn[--nl]);
while(nr < fi[ask[i].r]) sol(dfn[++nr]);
while(nr > fi[ask[i].r]) sol(dfn[nr--]);
while(nt < ask[i].ti)
{
++nt;
//vis 记录一个 节点计算了几次
change();
}
while(nt > ask[i].ti)
{
change();
--nt;
}
int p = LCA(ask[i].l, ask[i].r);
if(ask[i].l ^ p) sol(ask[i].l);
if(ask[i].l ^ p && ask[i].r ^ p) sol(p);
res[ask[i].id] = ans;
if(ask[i].l ^ p) sol(ask[i].l);
if(ask[i].l ^ p && ask[i].r ^ p) sol(p);
}
for (int i = 1; i <= qu; i++)
{
printf("%lld
", res[i]);
}
return 0;
}
//回滚莫队
#include <bits/stdc++.h>
using namespace std;
const int MAXN = 200010;
int n, m, block, bn, B[MAXN];
int a[MAXN], nl, nr, ans, b[MAXN];
int Ans[MAXN];
int last[MAXN], nxt[MAXN], fir[MAXN];
int s[MAXN], st;//记录操作
inline int read()
{
int a=0,f=1; char c=getchar();
while(c<'0'||c>'9'){if(c=='-')f=-1;c=getchar();}
while(c>='0'&&c<='9'){a=a*10+c-'0';c=getchar();}
return a*f;
}
inline void print(int x)
{
if(x<0)putchar('-'),x=-x;
if(x<10)putchar(x+48);
else print(x/10),putchar(x%10+48);
}
struct question
{
int l, r, id;
} ask[MAXN];
inline bool cmp(const question &a, const question &b)
{
return B[a.l] ^ B[b.l] ? B[a.l] < B[b.l] : a.r < b.r;
}
inline int max(const int &x, const int &y)
{
return x > y ? x : y;
}
inline int min(const int &x, const int &y)
{
return x < y ? x : y;
}
inline int calc(int l, int r)
{
int res = 0;
for (int i = l; i <= r; i++) fir[a[i]] = 0;
for (int i = l; i <= r; i++)
{
if(!fir[a[i]]) fir[a[i]] = i;
else res = max(res, i - fir[a[i]]);
}
return res;
}
int main()
{
n = read(); block = pow(n, 1.0 / 2.0);
for (int i = 1; i <= n; i++) a[i] = read(), b[i] = a[i], B[i] = (i - 1) / block + 1;
sort(b + 1, b + n + 1);
int un = unique(b + 1, b + n + 1) - b - 1;
for (int i = 1; i <= n; i++) a[i] = lower_bound(b + 1, b + un + 1, a[i]) - b;
m = read();
for (int i = 1; i <= m; i++) ask[i].l = read(), ask[i].r = read(), ask[i].id = i;
bn = B[n];
sort(ask + 1, ask + m + 1, cmp);
for (int i = 1, j = 1; i <= bn; i++)
{
int br = min(n, i * block);
nl = br + 1, nr = br, ans = 0;
st = 0;
for (;B[ask[j].l] == i; j++)
{
//last记录第一次出现,nxt记录最后一次出现
if(B[ask[j].r] == i)//在同一个块内暴力计算
{
Ans[ask[j].id] = calc(ask[j].l, ask[j].r);
continue;
}
while(nr < ask[j].r)//同一个块内r递增
{
++nr;
nxt[a[nr]] = nr;
if(!last[a[nr]]) last[a[nr]] = nr, s[++st] = a[nr];
ans = max(ans, nr - last[a[nr]]);
}
int tmp = ans; //先保存一下,因为右区间的贡献不会被刷新,但左区间的会
while(nl > ask[j].l)
{
--nl;
if(nxt[a[nl]]) tmp = max(tmp, nxt[a[nl]] - nl);
else nxt[a[nl]] = nl;
}
Ans[ask[j].id] = tmp;
while(nl <= br)
{
if(nxt[a[nl]] == nl) nxt[a[nl]] = 0;//去掉左区间的贡献
++nl;
}
}
for (int i = 1; i <= st; i++) last[s[i]] = nxt[s[i]] = 0;//将上一个块处理的贡献清空
}
for (int i = 1; i <= m; i++) print(Ans[i]), putchar('
');
return 0;
}