• 使用Matlab计算Efficient frontier


    寻找slope最大点的函数

    function [ port, opt_mu, opt_sigma ] = highest_slope_portfolio( R, RF, mu, sigma )
        % This function finds the portfolio with the largest slope
        % this function can easily be much more general 
        % e.g. mu, RF, sigma can be parameters
        if  nargin < 1
            return
        elseif nargin == 1
            RF=0.02;
            mu=[.1 .2]';
            sigma=[.1 .2]';
        elseif nargin == 2
            mu=[.1 .2]';
            sigma=[.1 .2]';
        end
    
        % Here we use our define correlation coefficient
        C=diag(sigma)*R*diag(sigma);
    
        A=2*C;
        A(:,end+1)=-(mu-RF);
        A(end+1,1:end-1)=(mu-RF)';
    
        Rp=mu(1);
        b=zeros(length(mu),1);
        b(end+1,1)=Rp-RF;
    
        x=inv(A)*b;
        xopt=x(1:length(mu))./sum(x(1:length(mu)))';
    
        % Return value
        port = xopt;
        opt_mu  = xopt' * mu;
        opt_sigma = sqrt( xopt' * C * xopt);
    
    end
    

    案例 对比有无 无风险借贷的lending 和 borrowing:

    Find the efficient frontier where short sales are allowed with and without risk less lending and borrowing. The following is given and does not change through question one of the assignment.

    • The risk free rate Rf is 2 %
    • Asset 1 yearly expected return is 10% and the standard deviation is 10%
    • Asset 2 yearly expected return is 20% and the standard deviation is 20%

    For each of the following correlation coefficient between assets 1 and 2: rho=1; rho=0.5; rho=0; rho=-1

    For Pepsi, Coca-Cola and Microsoft, estimate the yearly return, and covariance matrix of assets returns. 

    % To prevent unnessary loading of data from yahoo finance we add the if
    % statement
    if ~exist('stocks', 'var')
        stocks=hist_stock_data('01011991','01012001','PEP', 'KO','MSFT','frequency','wk');
        Pepsi = stocks(1);
        CocaCola = stocks(2);
        Microsoft = stocks(3);
    end
    
    % Caclualte log returns
    PEPLR  = log(Pepsi.AdjClose(2:end)./Pepsi.AdjClose(1:end-1) );
    CCLR  = log(CocaCola.AdjClose(2:end)./CocaCola.AdjClose(1:end-1) );
    MSLR = log(Microsoft.AdjClose(2:end)./Microsoft.AdjClose(1:end-1) );
    
    LogReturns = [ PEPLR, CCLR, MSLR ];
    
    ymean = 52 * mean(LogReturns)';
    ystd = sqrt (52 * var(LogReturns))';
    ycorr =  corr(LogReturns)'; %mistake was cor before
    

    Calculate the efficient frontier with and without risk less lending and borrowing.  

    % These is constant throughout the excercise
    RF = .02;
    
    xopt = cell(2);
    % Calculate the highest slope protfolio with each 
    [xopt{1}, muopt(1), sigopt(1)]  = highest_slope_portfolio( ycorr(1:2, 1:2), RF, ymean(1:2), ystd(1:2) );
    [xopt{2}, muopt(2), sigopt(2)]  = highest_slope_portfolio( ycorr, RF, ymean, ystd);
    
    % Plotting point by point
    hold on;
    plot (sigopt(1), muopt(1) , 'x');
    hold on;
    plot (sigopt(2), muopt(2) , 'go');
    
    
    % As we know RF = 2% we can already plot the differnet efficient frontiers
    % The starting point is always the same. 0 risk 2% 
    hold on;
    plot (0, .02, 'o');
    
    hold on;
    RF_p1 = [0 sigopt(1) 2* sigopt(1)];
    opt1_p = [.02  muopt(1) (2 * muopt(1) - RF) ];
    line(RF_p1, opt1_p  );
    
    hold on;
    RF_p2 = [0 sigopt(2) 2* sigopt(2)];
    opt2_p = [.02  muopt(2) (muopt(2) * 2 - RF)];
    line(RF_p2, opt2_p, 'Color',[1 0 0]);
    
    % We can find ANOTHER efficient portfolio on the frontier, by running the
    % same optimization with a DIFFERENT interscept
    % Calculate the highest slope protfolio with each 
    xopt2 = cell(2);
    [xopt2{1}, muopt2(1), sigopt2(1)]  = highest_slope_portfolio( ycorr(1:2, 1:2), .05, ymean(1:2), ystd(1:2) );
    [xopt2{2}, muopt2(2), sigopt2(2)] = highest_slope_portfolio( ycorr, .05, ymean, ystd);
    %[xopt2(3,:), muopt2(3), sigopt2(3)] = highest_slope_portfolio( R{3}, .05);
    %[xopt2(4,:), muopt2(4), sigopt2(4)] = highest_slope_portfolio( R{4}, .05);
    
    
    % This is what we do, look for optimal point if the RF rate was 5% 
    % I Plot this too to show the idea
    hold on;
    plot (0, .05, 'o');
    
    % Plotting the 2nd point on the portfolio
    hold on;
    plot (sigopt2(1), muopt2(1) , 'go');
    hold on;
    plot (sigopt2(2), muopt2(2) , 'co');
    
    
    C = cell(2,1);
    
    % Define the corresponding correlation matrices
    C{1}=diag(ystd(1:2))*ycorr(1:2,1:2)*diag(ystd(1:2));
    C{2}=diag(ystd)*ycorr*diag(ystd);
    
    
    % As seen in class we have a general formula for finding the mean variance
    % portfolio for two assets - 
    
    large_n = 100;
    k = 20;
    mu_p = zeros(4, 4*k* large_n + 1);
    std_p = zeros(4, 4*k* large_n + 1);
    %SR
    
    % We will go through different combinations to find the efficient frontier;
    for j = 1:2
        for i = -2*k* large_n:1:2 * 2*k*large_n
            curr_port = i / large_n * xopt2{j} + (1 - i / large_n) * xopt{j};
            mu_p (j, i + 2*k * large_n + 1) = curr_port' * ymean(1:j+1);
            std_p(j, i + 2*k * large_n + 1) = sqrt(curr_port' * C{j} * curr_port);
            
        end
    end
     
    % SR =( mu_p - RF) ./ std_p
    %find (max(SR) == SR)
    %Plotting the efficient frontiers
    
    hold on;
    plot( std_p(1,:), mu_p(1,:));
    %pause;
    hold on;
    plot( std_p(2,:), mu_p(2,:), 'r');
    

      得到的图案:

  • 相关阅读:
    matlab中pcolorh函数作用
    Matlab中^2和.^2的区别
    Python实战项目网络爬虫 之 爬取小说吧小说正文
    如何查看mysql数据库的端口
    template模板找不到
    templates模板使用变量,显示红色报错
    多线程案例1:奇偶交替输出
    idea配置classpath,后面文件找不到,显示红色
    idea创建各种类型项目
    tomcat修改端口
  • 原文地址:https://www.cnblogs.com/hanani/p/10094544.html
Copyright © 2020-2023  润新知