MapReduce的基本思想
先举一个简单的例子: 打个比方我们有三个人斗地主, 要数数牌够不够, 一种最简单的方法可以找一个人数数是不是有54张(传统单机计算); 还可以三个人各分一摞牌数各自的(Map阶段), 三个人的总数加起来汇总(Reduce阶段).
所以MapReduce的思想即: "分治"+"汇总". 大数据量下, 一台机器处理不了的数据, 就用多台机器, 以分布式集群的形式来处理.
关于Map与Reduce有很多文章将这两个词直译为映射和规约, 其实Map的思想就是各自负责一块实行分治, Reduce的思想即: 将分治的结果汇总. 干嘛翻译的这么生硬呢(故意让人觉得大数据很神秘么?)
MapReduce的编程入门
还是很简单的模式: 包含8个步骤
我们那最简单的单词计数来举例(号称大数据的HelloWorld), 先让大家跑起来看看现象再说.
按照MapReduce思想有两个主要步骤, Mapper与Reducer, 剩余的东西Hadoop都帮助我们实现了, 先入门实践再了解原理;
MapReducer有两种运行模式: 1,集群模式(生产环境);2,本地模式(试验学习)
前提:
1, 下载一个Hadoop的安装包, 放到本地, 并配置到环境变量里面;
2, 下载一个hadoop.dll放到hadoop的bin目录下
创建Maven工程, 导入依赖
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-common</artifactId>
<version>2.10.1</version>
</dependency>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-client</artifactId>
<version>2.10.1</version>
</dependency>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-hdfs</artifactId>
<version>2.10.1</version>
</dependency>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-mapreduce-client-core</artifactId>
<version>2.10.1</version>
</dependency>
数据文件D:Sourcedatademo_result1xx.txt
hello,world,hadoop
hive,sqoop,flume,hello
kitty,tom,jerry,world
hadoop
开始编写代码
第一步, 创建Mapper类
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
import java.io.IOException;
public class BaseMapper extends Mapper<LongWritable, Text, Text, LongWritable> {
@Override
protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
String[] words = value.toString().split(",");
Text keyout = new Text();
LongWritable valueout = new LongWritable(1);
for (String word : words) {
keyout.set(word);
context.write(keyout, valueout);
}
}
}
第二步, 创建Reducer类
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;
import java.io.IOException;
public class BaseReducer extends Reducer<Text, LongWritable, Text, LongWritable> {
@Override
protected void reduce(Text key, Iterable<LongWritable> values, Context context) throws IOException, InterruptedException {
int x = 0;
for (LongWritable value : values) {
x += value.get();
}
context.write(key, new LongWritable(x));
}
}
第三步, 创建Job启动类
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;
public class MainJob extends Configured implements Tool {
@Override
public int run(String[] strings) throws Exception {
Job job = Job.getInstance(super.getConf(), MainJob.class.getName());
//集群运行时候: 要打包
job.setJarByClass(MainJob.class);
//1, 读取输入文件解析类
job.setInputFormatClass(TextInputFormat.class);
TextInputFormat.setInputPaths(job,new Path("D:\Source\data\data_in"));
//2, 设置Mapper类
job.setMapperClass(BaseMapper.class);
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(LongWritable.class);
//3, 设置shuffle阶段的分区, 排序, 规约, 分组
//7, 设置Reducer类
job.setReducerClass(BaseReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(LongWritable.class);
//8, 设置文件输出类以及输出地址
job.setOutputFormatClass(TextOutputFormat.class);
TextOutputFormat.setOutputPath(job,new Path("D:\Source\data\demo_result1"));
//启动MapReduceJob
boolean completion = job.waitForCompletion(true);
return completion?0:1;
}
public static void main(String[] args) {
MainJob mainJob = new MainJob();
try {
Configuration configuration = new Configuration();
configuration.set("mapreduce.framework.name","local");
configuration.set("yarn.resourcemanager.hostname","local");
int run = ToolRunner.run(configuration, mainJob, args);
System.exit(run);
} catch (Exception e) {
e.printStackTrace();
}
}
}